Design of two ongoing clinical trials of tolvaptan in the treatment of pediatric patients with autosomal recessive polycystic kidney disease
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu multicentrická studie, časopisecké články, práce podpořená grantem
PubMed
36782137
PubMed Central
PMC9926647
DOI
10.1186/s12882-023-03072-x
PII: 10.1186/s12882-023-03072-x
Knihovny.cz E-zdroje
- Klíčová slova
- Autosomal recessive polycystic kidney disease (ARPKD), Clinical trial, Efficacy, Pediatric, Safety, Tolvaptan,
- MeSH
- antagonisté antidiuretického hormonu škodlivé účinky MeSH
- cysty * farmakoterapie MeSH
- dítě MeSH
- ledviny MeSH
- lidé MeSH
- longitudinální studie MeSH
- novorozenec MeSH
- polycystické ledviny autozomálně dominantní * MeSH
- polycystické ledviny autozomálně recesivní * diagnostické zobrazování farmakoterapie MeSH
- tolvaptan terapeutické užití MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antagonisté antidiuretického hormonu MeSH
- tolvaptan MeSH
PURPOSE: Autosomal recessive polycystic kidney disease (ARPKD) is a hereditary condition characterized by massive kidney enlargement and developmental liver defects. Potential consequences during childhood include the need for kidney replacement therapy (KRT). We report the design of 2 ongoing clinical trials (Study 204, Study 307) to evaluate safety, tolerability, and efficacy of tolvaptan in children with ARPKD. METHODS: Both trials are of multinational, multicenter, open-label design. Age range at enrollment is 28 days to < 12 weeks in Study 204 and 28 days to < 18 years in Study 307. Subjects in both studies must have a clinical diagnosis of ARPKD, and those in Study 204 must additionally have signs indicative of risk of rapid progression to KRT, namely, all of: nephromegaly, multiple kidney cysts or increased kidney echogenicity suggesting microcysts, and oligohydramnios or anhydramnios. Target enrollment is 20 subjects for Study 204 and ≥ 10 subjects for Study 307. RESULTS: Follow-up is 24 months in Study 204 (with optional additional treatment up to 36 months) and 18 months in Study 307. Outcomes include safety, tolerability, change in kidney function, and percentage of subjects requiring KRT relative to historical data. Regular safety assessments monitor for possible adverse effects of treatment on parameters such as liver function, kidney function, fluid balance, electrolyte levels, and growth trajectory, with increased frequency of monitoring following tolvaptan initiation or dose escalation. CONCLUSIONS: These trials will provide data on tolvaptan safety and efficacy in a population without disease-specific treatment options. TRIAL REGISTRATION: Study 204: EudraCT 2020-005991-36; Study 307: EudraCT 2020-005992-10.
Center for Translational Research Children's National Research Institute Washington DC USA
Department of Pediatric Nephrology University Hospitals Leuven Herestraat 49 3000 Leuven Belgium
Department of Pediatrics 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Pediatrics University Hospital Ostrava Ostrava Czech Republic
Division of Pediatric Nephrology University Children's Hospital Heidelberg Heidelberg Germany
PKD Research Group Department of Cellular and Molecular Medicine KU Leuven Leuven Belgium
Zobrazit více v PubMed
Alzarka B, Morizono H, Bollman JW, Kim D, Guay-Woodford LM. Design and implementation of the Hepatorenal fibrocystic disease core center clinical database: a centralized resource for characterizing autosomal recessive polycystic kidney disease and other hepatorenal fibrocystic diseases. Front Pediatr. 2017;5:80. doi: 10.3389/fped.2017.00080. PubMed DOI PMC
Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C, Senderek J, Esquivel E, Zeltner R, et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet. 2002;70:1305–17. doi: 10.1086/340448. PubMed DOI PMC
Lu H, Galeano MCR, Ott E, Kaeslin G, Kausalya PJ, Kramer C, Ortiz-Brüchle N, Hilger N, Metzis V, Hiersche M, et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet. 2017;49:1025–1034. doi: 10.1038/ng.3871. PubMed DOI PMC
Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4:50. doi: 10.1038/s41572-018-0047-y. PubMed DOI PMC
Wicher D, Obrycki Ł, Jankowska I. Autosomal recessive polycystic kidney disease-the clinical aspects and diagnostic challenges. J Pediatr Genet. 2021;10:1–8. doi: 10.1055/s-0040-1714701. PubMed DOI PMC
Guay-Woodford LM, Desmond RA. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics. 2003;111(5 Pt 1):1072–1080. doi: 10.1542/peds.111.5.1072. PubMed DOI
Bergmann C, Senderek J, Schneider F, Dornia C, Küpper F, Eggermann T, Rudnik-Schöneborn S, Kirfel J, Moser M, Büttner R, et al. PKHD1 mutations in families requesting prenatal diagnosis for autosomal recessive polycystic kidney disease (ARPKD) Hum Mutat. 2004;23:487–495. doi: 10.1002/humu.20019. PubMed DOI
Liebau MC. Early clinical management of autosomal recessive polycystic kidney disease. Pediatr Nephrol. 2021;36:3561–3570. doi: 10.1007/s00467-021-04970-8. PubMed DOI PMC
Mekahli D, van Stralen KJ, Bonthuis M, Jager KJ, Balat A, Benetti E, Godefroid N, Edvardsson VO, Heaf JG, Jankauskiene A, ESPN/ERA-EDTA Registry et al. Kidney versus combined kidney and liver transplantation in young people with autosomal recessive polycystic kidney disease: data from the European Society for Pediatric Nephrology/European Renal Association-European Dialysis and Transplant (ESPN/ERA-EDTA) Registry. Am J Kidney Dis. 2016;68:782–788. doi: 10.1053/j.ajkd.2016.06.019. PubMed DOI
Bergmann C, Senderek J, Windelen E, Küpper F, Middeldorf I, Schneider F, Dornia C, Rudnik-Schöneborn S, Konrad M, Schmitt CP, APN (Arbeitsgemeinschaft für Pädiatrische Nephrologie) et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD) Kidney Int. 2005;67:829–848. doi: 10.1111/j.1523-1755.2005.00148.x. PubMed DOI
Gunay-Aygun M, Font-Montgomery E, Lukose L, Tuchman M, Graf J, Bryant JC, Kleta R, Garcia A, Edwards H, Piwnica-Worms K, et al. Correlation of kidney function, volume and imaging findings, and PKHD1 mutations in 73 patients with autosomal recessive polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5:972–984. doi: 10.2215/cjn.07141009. PubMed DOI PMC
Burgmaier K, Brinker L, Erger F, Beck BB, Benz MR, Bergmann C, Boyer O, Collard L, Dafinger C, Fila M, ESCAPE Study group. GPN study group. Dötsch J, Schaefer F, Liebau MC, ARegPKD consortium et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int. 2021;100:650–659. doi: 10.1016/j.kint.2021.04.019. PubMed DOI
Burgmaier K, Kunzmann K, Ariceta G, Bergmann C, Buescher AK, Burgmaier M, Dursun I, Duzova A, Eid L, Erger F, ESCAPE Study Group. GPN Study Group. Dötsch J, Schaefer F, Liebau MC, ARegPKD consortium et al. Risk factors for early dialysis dependency in autosomal recessive polycystic kidney disease. J Pediatr. 2018;199:22–28.e6. doi: 10.1016/j.jpeds.2018.03.052. PubMed DOI
Burgmaier K, Kilian S, Arbeiter K, Atmis B, Büscher A, Derichs U, Dursun I, Duzova A, Eid LA, Galiano M, ARegPKD Consortium et al. Early childhood height-adjusted total kidney volume as a risk marker of kidney survival in ARPKD. Sci Rep. 2021;11:21677. doi: 10.1038/s41598-021-00523-z. PubMed DOI PMC
Hanaoka K, Guggino WB. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol. 2000;11:1179–1187. doi: 10.1681/asn.v1171179. PubMed DOI
Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S, Rome LA, Sullivan LP, Grantham JJ. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int. 2000;57:1460–1471. doi: 10.1046/j.1523-1755.2000.00991.x. PubMed DOI
Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19(1):102–108. doi: 10.1681/asn.2007060688. PubMed DOI PMC
Janssens P, Weydert C, De Rechter S, Wissing KM, Liebau MC, Mekahli D. Expanding the role of vasopressin antagonism in polycystic kidney diseases: from adults to children? Pediatr Nephrol. 2018;33:395–408. doi: 10.1007/s00467-017-3672-x. PubMed DOI
Gattone VH, 2nd, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9:1323–1326. doi: 10.1038/nm935. PubMed DOI
Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH., 2nd Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10:363–364. doi: 10.1038/nm1004. PubMed DOI
Wang X, Gattone V, 2nd, Harris PC, Torres VE. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol. 2005;16:846–851. doi: 10.1681/asn.2004121090. PubMed DOI
Meijer E, Gansevoort RT, de Jong PE, van der Wal AM, Leonhard WN, de Krey SR, van den Born J, Mulder GM, van Goor H, Struck J, et al. Therapeutic potential of vasopressin V2 receptor antagonist in a mouse model for autosomal dominant polycystic kidney disease: optimal timing and dosing of the drug. Nephrol Dial Transplant. 2011;26:2445–2453. doi: 10.1093/ndt/gfr069. PubMed DOI
Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS, TEMPO 3:4 Trial Investigators Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367:2407–2418. doi: 10.1056/nejmoa1205511. PubMed DOI PMC
Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Koch G, Ouyang J, McQuade RD, Blais JD, Czerwiec FS, REPRISE Trial Investigators et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Engl J Med. 2017;377:1930–1942. doi: 10.1056/nejmoa1710030. PubMed DOI
Mekahli D, Guay-Woodford LM, Cadnapaphornchai MA, Greenbaum LA, Litwin M, Seeman T, Dandurand A, Shi L, Sikes K, Shoaf SE, et al. Tolvaptan for children and adolescents with autosomal dominant polycystic kidney disease: randomized controlled trial. Clin J Am Soc Nephrol. 2023;18:36–46. doi: 10.2215/CJN.0000000000000022. PubMed DOI PMC
Liebau MC, Mekahli D. Translational research approaches to study pediatric polycystic kidney disease. Mol Cell Pediatr. 2021;8:20. doi: 10.1186/s40348-021-00131-x. PubMed DOI PMC
Ebner K, Feldkoetter M, Ariceta G, Bergmann C, Buettner R, Doyon A, Duzova A, Goebel H, Haffner D, Hero B, ESCAPE Study Group. GPN Study Group et al. Rationale, design and objectives of ARegPKD, a European ARPKD registry study. BMC Nephrol. 2015;16:22. doi: 10.1186/s12882-015-0002-z. PubMed DOI PMC
ARPKDB: Autosomal Recessive Polycystic Kidney Disease database. https://arpkdb.org/. Accessed 28 Nov 2022.
Shoaf SE, Bricmont P, Mallikaarjun S. Effects of CYP3A4 inhibition and induction on the pharmacokinetics and pharmacodynamics of tolvaptan, a non-peptide AVP antagonist in healthy subjects. Br J Clin Pharmacol. 2012;73:579–587. doi: 10.1111/j.1365-2125.2011.04114.x. PubMed DOI PMC
de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37:485–505. doi: 10.2165/00003088-199937060-00004. PubMed DOI
JYNARQUE [prescribing information]. Rockville, MD: Otsuka America Pharmaceutical, Inc.; 2020. https://www.otsuka-us.com/sites/g/files/qhldwo4671/files/media/static/JYNARQUE-PI.pdf. Accessed 14 Nov 2022.
United States Food and Drug Administration. Guidance for industry, drug-induced liver injury: premarketing clinical evaluation. 2009. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM174090.pdf. Accessed 11 July 2022.
Bergmann C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr. 2018;5:221. doi: 10.3389/fped.2017.00221. PubMed DOI PMC
Watkins PB, Lewis JH, Kaplowitz N, Alpers DH, Blais JD, Smotzer DM, Krasa H, Ouyang J, Torres VE, Czerwiec FS, et al. Clinical pattern of tolvaptan-associated liver injury in subjects with autosomal dominant polycystic kidney disease: analysis of clinical trials database. Drug Saf. 2015;38:1103–1113. doi: 10.1007/s40264-015-0327-3. PubMed DOI PMC
Alpers DH, Lewis JH, Hunt CM, Freston JW, Torres VE, Li H, Wang W, Hoke ME, Roth SE, Westcott-Baker L, et al. Clinical pattern of tolvaptan-associated liver injury in subjects with autosomal dominant polycystic kidney disease (ADPKD): analysis of pivotal clinical trials. Am J Kidney Dis. 2022;S0272–6386(22):00921. doi: 10.1053/j.ajkd.2022.08.012. PubMed DOI