Intraoperative Imaging in Hepatopancreatobiliary Surgery
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 CA205941
NCI NIH HHS - United States
R01CA205941
NCI NIH HHS - United States
U54CA118949
NCI NIH HHS - United States
R01 EB034731
NIBIB NIH HHS - United States
f31ca261044
NCI NIH HHS - United States
p30ca225520
NCI NIH HHS - United States
R01EB034731
NCI NIH HHS - United States
F31 CA261044
NCI NIH HHS - United States
P30 CA225520
NCI NIH HHS - United States
PubMed
37509355
PubMed Central
PMC10377919
DOI
10.3390/cancers15143694
PII: cancers15143694
Knihovny.cz E-zdroje
- Klíčová slova
- hepatopancreatobiliary surgery, image-guided surgery, intraoperative imaging, targeted imaging,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Hepatopancreatobiliary surgery belongs to one of the most complex fields of general surgery. An intricate and vital anatomy is accompanied by difficult distinctions of tumors from fibrosis and inflammation; the identification of precise tumor margins; or small, even disappearing, lesions on currently available imaging. The routine implementation of ultrasound use shifted the possibilities in the operating room, yet more precision is necessary to achieve negative resection margins. Modalities utilizing fluorescent-compatible dyes have proven their role in hepatopancreatobiliary surgery, although this is not yet a routine practice, as there are many limitations. Modalities, such as photoacoustic imaging or 3D holograms, are emerging but are mostly limited to preclinical settings. There is a need to identify and develop an ideal contrast agent capable of differentiating between malignant and benign tissue and to report on the prognostic benefits of implemented intraoperative imaging in order to navigate clinical translation. This review focuses on existing and developing imaging modalities for intraoperative use, tailored to the needs of hepatopancreatobiliary cancers. We will also cover the application of these imaging techniques to theranostics to achieve combined diagnostic and therapeutic potential.
Department of Pathology University of Alabama at Birmingham Birmingham AL 35294 USA
Department of Surgery Military University Hospital Prague 16902 Prague Czech Republic
Department of Surgery University of Oklahoma Health Science Center Oklahoma City OK 73104 USA
Zobrazit více v PubMed
Fukukura Y., Kumagae Y., Fujisaki Y., Yamagishi R., Nakamura S., Kamizono J., Nakajo M., Kamimura K., Nagano H., Takumi K., et al. Adding Delayed Phase Images to Dual-Phase Contrast-Enhanced CT Increases Sensitivity for Small Pancreatic Ductal Adenocarcinoma. AJR Am. J. Roentgenol. 2021;217:888–897. doi: 10.2214/AJR.20.25430. PubMed DOI
Donato H., Franca M., Candelaria I., Caseiro-Alves F. Liver MRI: From basic protocol to advanced techniques. Eur. J. Radiol. 2017;93:30–39. doi: 10.1016/j.ejrad.2017.05.028. PubMed DOI
Choi J.Y., Lee J.M., Sirlin C.B. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: Part I. Development, growth, and spread: Key pathologic and imaging aspects. Radiology. 2014;272:635–654. doi: 10.1148/radiol.14132361. PubMed DOI PMC
Choi J.Y., Lee J.M., Sirlin C.B. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: Part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology. 2014;273:30–50. doi: 10.1148/radiol.14132362. PubMed DOI PMC
Gonzalo-Marin J., Vila J.J., Perez-Miranda M. Role of endoscopic ultrasound in the diagnosis of pancreatic cancer. World J. Gastrointest. Oncol. 2014;6:360–368. doi: 10.4251/wjgo.v6.i9.360. PubMed DOI PMC
Voskuil F.J., Vonk J., van der Vegt B., Kruijff S., Ntziachristos V., van der Zaag P.J., Witjes M.J.H., van Dam G.M. Intraoperative imaging in pathology-assisted surgery. Nat. Biomed. Eng. 2022;6:503–514. doi: 10.1038/s41551-021-00808-8. PubMed DOI
Nelson D.W., Blanchard T.H., Causey M.W., Homann J.F., Brown T.A. Examining the accuracy and clinical usefulness of intraoperative frozen section analysis in the management of pancreatic lesions. Am. J. Surg. 2013;205:613–617. doi: 10.1016/j.amjsurg.2013.01.015. PubMed DOI
Liu F.S., Wang H.T., Ma W.J., Li J.H., Liu Y.Y., Tang S.L., Li K., Jiang P., Yang Z.Y., He Y.M., et al. Short- and Long-Term Outcomes of Indocyanine Green Fluorescence Navigation-Versus Conventional-Laparoscopic Hepatectomy for Hepatocellular Carcinoma: A Propensity Score-Matched, Retrospective, Cohort Study. Ann. Surg. Oncol. 2023;30:1991–2002. doi: 10.1245/s10434-022-13027-5. PubMed DOI PMC
Qin R., Kendrick M.L., Wolfgang C.L., Edil B.H., Palanivelu C., Parks R.W., Yang Y., He J., Zhang T., Mou Y., et al. International expert consensus on laparoscopic pancreaticoduodenectomy. Hepatobiliary Surg. Nutr. 2020;9:464–483. doi: 10.21037/hbsn-20-446. PubMed DOI PMC
Stummer W., Pichlmeier U., Meinel T., Wiestler O.D., Zanella F., Reulen H.J., Group A.L.-G.S. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401. doi: 10.1016/S1470-2045(06)70665-9. PubMed DOI
van Dam G.M., Themelis G., Crane L.M., Harlaar N.J., Pleijhuis R.G., Kelder W., Sarantopoulos A., de Jong J.S., Arts H.J., van der Zee A.G., et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: First in-human results. Nat. Med. 2011;17:1315–1319. doi: 10.1038/nm.2472. PubMed DOI
Bartos A., Iancu I., Ciobanu L., Badea R., Sparchez Z., Bartos D.M. Intraoperative ultrasound in liver and pancreatic surgery. Med. Ultrason. 2021;23:319–328. doi: 10.11152/mu-2853. PubMed DOI
Lee J.Y., Kim Y.H., Roh Y.H., Roh K.B., Kim K.W., Kang S.H., Baek Y.H., Lee S.W., Han S.Y., Kwon H.J., et al. Intraoperative radiofrequency ablation for hepatocellular carcinoma in 112 patients with cirrhosis: A surgeon’s view. Ann. Surg. Treat. Res. 2016;90:147–156. doi: 10.4174/astr.2016.90.3.147. PubMed DOI PMC
Torzilli G., Leoni P., Gendarini A., Calliada F., Olivari N., Makuuchi M. Ultrasound-guided liver resections for hepatocellular carcinoma. Hepatogastroenterology. 2002;49:21–27. PubMed
Sietses C., Meijerink M.R., Meijer S., van den Tol M.P. The impact of intraoperative ultrasonography on the surgical treatment of patients with colorectal liver metastases. Surg. Endosc. 2010;24:1917–1922. doi: 10.1007/s00464-009-0874-8. PubMed DOI PMC
Hoch G., Croise-Laurent V., Germain A., Brunaud L., Bresler L., Ayav A. Is intraoperative ultrasound still useful for the detection of colorectal cancer liver metastases? HPB. 2015;17:514–519. doi: 10.1111/hpb.12393. PubMed DOI PMC
Torzilli G., Montorsi M., Donadon M., Palmisano A., Del Fabbro D., Gambetti A., Olivari N., Makuuchi M. “Radical but conservative” is the main goal for ultrasonography-guided liver resection: Prospective validation of this approach. J. Am. Coll. Surg. 2005;201:517–528. doi: 10.1016/j.jamcollsurg.2005.04.026. PubMed DOI
Sahani D.V., Kalva S.P., Tanabe K.K., Hayat S.M., O’Neill M.J., Halpern E.F., Saini S., Mueller P.R. Intraoperative US in patients undergoing surgery for liver neoplasms: Comparison with MR imaging. Radiology. 2004;232:810–814. doi: 10.1148/radiol.2323030896. PubMed DOI
Torzilli G., Del Fabbro D., Palmisano A., Donadon M., Bianchi P., Roncalli M., Balzarini L., Montorsi M. Contrast-enhanced intraoperative ultrasonography during hepatectomies for colorectal cancer liver metastases. J. Gastrointest. Surg. 2005;9:1148–1153; discussion 1153–1144. doi: 10.1016/j.gassur.2005.08.016. PubMed DOI
Shah A.J., Callaway M., Thomas M.G., Finch-Jones M.D. Contrast-enhanced intraoperative ultrasound improves detection of liver metastases during surgery for primary colorectal cancer. HPB. 2010;12:181–187. doi: 10.1111/j.1477-2574.2009.00141.x. PubMed DOI PMC
Parks K.R., Hagopian E.J. Introduction: The Importance of Ultrasound in a Surgical Practice. In: Hagopian E.J., Machi J., editors. Abdominal Ultrasound for Surgeons. Springer; New York, NY, USA: 2014. pp. 3–6.
Claudon M., Dietrich C.F., Choi B.I., Cosgrove D.O., Kudo M., Nolsoe C.P., Piscaglia F., Wilson S.R., Barr R.G., Chammas M.C., et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver--update 2012: A WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultraschall Med. 2013;34:11–29. doi: 10.1055/s-0032-1325499. PubMed DOI
Peloso A., Franchi E., Canepa M.C., Barbieri L., Briani L., Ferrario J., Bianco C., Quaretti P., Brugnatelli S., Dionigi P., et al. Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer. HPB. 2013;15:928–934. doi: 10.1111/hpb.12057. PubMed DOI PMC
van der Steen K., Bosscha K., Lips D.J. The value of laparoscopic intraoperative ultrasound of the liver by the surgeon. Ann. Laparosc. Endosc. Surg. 2021;6:17. doi: 10.21037/ales-20-106. DOI
Ishizawa T., Bandai Y., Ijichi M., Kaneko J., Hasegawa K., Kokudo N. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br. J. Surg. 2010;97:1369–1377. doi: 10.1002/bjs.7125. PubMed DOI
Ashitate Y., Stockdale A., Choi H.S., Laurence R.G., Frangioni J.V. Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy. J. Surg. Res. 2012;176:7–13. doi: 10.1016/j.jss.2011.06.027. PubMed DOI PMC
Aoki T., Murakami M., Yasuda D., Shimizu Y., Kusano T., Matsuda K., Niiya T., Kato H., Murai N., Otsuka K., et al. Intraoperative fluorescent imaging using indocyanine green for liver mapping and cholangiography. J. Hepatobiliary Pancreat. Sci. 2010;17:590–594. doi: 10.1007/s00534-009-0197-0. PubMed DOI
van Manen L., Handgraaf H.J.M., Diana M., Dijkstra J., Ishizawa T., Vahrmeijer A.L., Mieog J.S.D. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J. Surg. Oncol. 2018;118:283–300. doi: 10.1002/jso.25105. PubMed DOI PMC
Detter C., Wipper S., Russ D., Iffland A., Burdorf L., Thein E., Wegscheider K., Reichenspurner H., Reichart B. Fluorescent cardiac imaging: A novel intraoperative method for quantitative assessment of myocardial perfusion during graded coronary artery stenosis. Circulation. 2007;116:1007–1014. doi: 10.1161/CIRCULATIONAHA.106.655936. PubMed DOI
Dorshow R.B., Bugaj J.E., Burleigh B.D., Duncan J.R., Johnson M.A., Jones W.B. Noninvasive fluorescence detection of hepatic and renal function. J. Biomed. Opt. 1998;3:340–345. doi: 10.1117/1.429854. PubMed DOI
Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Borresen-Dale A.L., et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477. PubMed DOI PMC
Debie P., Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front. Pharmacol. 2019;10:510. doi: 10.3389/fphar.2019.00510. PubMed DOI PMC
Cai S., Yang S., Lv W., Geng C., Gu W., Duan W., Wang W., Huang Z., Dong J. Sustained methylene blue staining to guide anatomic hepatectomy for hepatocellular carcinoma: Initial experience and technical details. Surgery. 2015;158:121–127. doi: 10.1016/j.surg.2015.01.018. PubMed DOI
Tuysuz U., Aktas H., Bati I.B., Emiroglu R. The role of Intraoperative cholangiography (IOC) and methylene blue tests in reducing bile leakage after living donor hepatectomy. Asian J. Surg. 2021;44:147–152. doi: 10.1016/j.asjsur.2020.04.001. PubMed DOI
Van Keulen S., Hom M., White H., Rosenthal E.L., Baik F.M. The Evolution of Fluorescence-Guided Surgery. Mol. Imaging Biol. 2023;25:36–45. doi: 10.1007/s11307-022-01772-8. PubMed DOI PMC
Wang X., Teh C.S.C., Ishizawa T., Aoki T., Cavallucci D., Lee S.Y., Panganiban K.M., Perini M.V., Shah S.R., Wang H., et al. Consensus Guidelines for the Use of Fluorescence Imaging in Hepatobiliary Surgery. Ann. Surg. 2021;274:97–106. doi: 10.1097/SLA.0000000000004718. PubMed DOI
Ishizawa T., Bandai Y., Kokudo N. Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: An initial experience. Arch. Surg. 2009;144:381–382. doi: 10.1001/archsurg.2009.9. PubMed DOI
Pesce A., Piccolo G., La Greca G., Puleo S. Utility of fluorescent cholangiography during laparoscopic cholecystectomy: A systematic review. World J. Gastroenterol. 2015;21:7877–7883. doi: 10.3748/wjg.v21.i25.7877. PubMed DOI PMC
Gene Skrabec C., Pardo Aranda F., Espin F., Cremades M., Navines J., Zarate A., Cugat E. Fluorescent cholangiography with direct injection of indocyanine green (ICG) into the gallbladder: A safety method to outline biliary anatomy. Langenbecks Arch. Surg. 2020;405:827–832. doi: 10.1007/s00423-020-01967-z. PubMed DOI
Ishizawa T., Masuda K., Urano Y., Kawaguchi Y., Satou S., Kaneko J., Hasegawa K., Shibahara J., Fukayama M., Tsuji S., et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann. Surg. Oncol. 2014;21:440–448. doi: 10.1245/s10434-013-3360-4. PubMed DOI
Wakabayashi T., Cacciaguerra A.B., Abe Y., Bona E.D., Nicolini D., Mocchegiani F., Kabeshima Y., Vivarelli M., Wakabayashi G., Kitagawa Y. Indocyanine Green Fluorescence Navigation in Liver Surgery: A Systematic Review on Dose and Timing of Administration. Ann. Surg. 2022;275:1025–1034. doi: 10.1097/SLA.0000000000005406. PubMed DOI
van der Vorst J.R., Schaafsma B.E., Hutteman M., Verbeek F.P.R., Liefers G.J., Hartgrink H.H., Smit V.T.H.B.M., Lowik C.W.G.M., van de Velde C.J.H., Frangioni J.V., et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer. 2013;119:3411–3418. doi: 10.1002/cncr.28203. PubMed DOI PMC
Patel I., Bartlett D., Dasari B.V., Chatzizacharias N., Isaac J., Marudanayagam R., Mirza D.F., Roberts J.K., Sutcliffe R.P. Detection of Colorectal Liver Metastases Using Near-Infrared Fluorescence Imaging During Hepatectomy: Prospective Single Centre UK Study. J. Gastrointest. Cancer. 2022 doi: 10.1007/s12029-022-00836-w. PubMed DOI
Ishizawa T., Zuker N.B., Kokudo N., Gayet B. Positive and negative staining of hepatic segments by use of fluorescent imaging techniques during laparoscopic hepatectomy. Arch Surg. 2012;147:393–394. doi: 10.1001/archsurg.2012.59. PubMed DOI
Newton A.D., Predina J.D., Shin M.H., Frenzel-Sulyok L.G., Vollmer C.M., Drebin J.A., Singhal S., Lee M.K.T. Intraoperative Near-infrared Imaging Can Identify Neoplasms and Aid in Real-time Margin Assessment During Pancreatic Resection. Ann. Surg. 2019;270:12–20. doi: 10.1097/SLA.0000000000003201. PubMed DOI PMC
Hutteman M., van der Vorst J.R., Mieog J.S., Bonsing B.A., Hartgrink H.H., Kuppen P.J., Lowik C.W., Frangioni J.V., van de Velde C.J., Vahrmeijer A.L. Near-infrared fluorescence imaging in patients undergoing pancreaticoduodenectomy. Eur. Surg. Res. 2011;47:90–97. doi: 10.1159/000329411. PubMed DOI PMC
Lohman R.F., Ozturk C.N., Ozturk C., Jayaprakash V., Djohan R. An Analysis of Current Techniques Used for Intraoperative Flap Evaluation. Ann. Plast. Surg. 2015;75:679–685. doi: 10.1097/SAP.0000000000000235. PubMed DOI
Shirata C., Kawaguchi Y., Kobayashi K., Kobayashi Y., Arita J., Akamatsu N., Kaneko J., Sakamoto Y., Kokudo N., Hasegawa K. Usefulness of indocyanine green-fluorescence imaging for real-time visualization of pancreas neuroendocrine tumor and cystic neoplasm. J. Surg. Oncol. 2018;118:1012–1020. doi: 10.1002/jso.25231. PubMed DOI
Paiella S., De Pastena M., Landoni L., Esposito A., Casetti L., Miotto M., Ramera M., Salvia R., Secchettin E., Bonamini D., et al. Is there a role for near-infrared technology in laparoscopic resection of pancreatic neuroendocrine tumors? Results of the COLPAN “colour-and-resect the pancreas” study. Surg. Endosc. 2017;31:4478–4484. doi: 10.1007/s00464-017-5501-5. PubMed DOI
Rompianesi G., Montalti R., Giglio M.C., Ceresa C.D.L., Nasto R.A., De Simone G., Troisi R.I. Systematic review, meta-analysis and single-centre experience of the diagnostic accuracy of intraoperative near-infrared indocyanine green-fluorescence in detecting pancreatic tumours. HPB. 2022;24:1823–1831. doi: 10.1016/j.hpb.2022.05.004. PubMed DOI
Liberale G., Vankerckhove S., Caldon M.G., Ahmed B., Moreau M., Nakadi I.E., Larsimont D., Donckier V., Bourgeois P., Group R., et al. Fluorescence Imaging After Indocyanine Green Injection for Detection of Peritoneal Metastases in Patients Undergoing Cytoreductive Surgery for Peritoneal Carcinomatosis from Colorectal Cancer: A Pilot Study. Ann. Surg. 2016;264:1110–1115. doi: 10.1097/SLA.0000000000001618. PubMed DOI
Leonhardt C.S., Niesen W., Kalkum E., Klotz R., Hank T., Buchler M.W., Strobel O., Probst P. Prognostic relevance of the revised R status definition in pancreatic cancer: Meta-analysis. BJS Open. 2022;6:zrac010. doi: 10.1093/bjsopen/zrac010. PubMed DOI PMC
Verbeke C.S., Menon K.V. Redefining resection margin status in pancreatic cancer. HPB. 2009;11:282–289. doi: 10.1111/j.1477-2574.2009.00055.x. PubMed DOI PMC
Strobel O., Hank T., Hinz U., Bergmann F., Schneider L., Springfeld C., Jager D., Schirmacher P., Hackert T., Buchler M.W. Pancreatic Cancer Surgery: The New R-status Counts. Ann. Surg. 2017;265:565–573. doi: 10.1097/SLA.0000000000001731. PubMed DOI
Hu Z., Fang C., Li B., Zhang Z., Cao C., Cai M., Su S., Sun X., Shi X., Li C., et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 2020;4:259–271. doi: 10.1038/s41551-019-0494-0. PubMed DOI
Lauwerends L.J., van Driel P., Baatenburg de Jong R.J., Hardillo J.A.U., Koljenovic S., Puppels G., Mezzanotte L., Lowik C., Rosenthal E.L., Vahrmeijer A.L., et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 2021;22:e186–e195. doi: 10.1016/S1470-2045(20)30600-8. PubMed DOI
Hoogstins C.E., Boogerd L.S., Sibinga Mulder B.G., Mieog J.S.D., Swijnenburg R.J., van de Velde C.J., Farina Sarasqueta A., Bonsing B.A., Framery B., Pèlegrin A., et al. Image-Guided Surgery in Patients with Pancreatic Cancer: First Results of a Clinical Trial Using SGM-101, a Novel Carcinoembryonic Antigen-Targeting, Near-Infrared Fluorescent Agent. Ann. Surg. Oncol. 2018;25:3350–3357. doi: 10.1245/s10434-018-6655-7. PubMed DOI PMC
McNally L.R., Mezera M., Morgan D.E., Frederick P.J., Yang E.S., Eltoum I.E., Grizzle W.E. Current and Emerging Clinical Applications of Multispectral Optoacoustic Tomography (MSOT) in Oncology. Clin. Cancer Res. 2016;22:3432–3439. doi: 10.1158/1078-0432.CCR-16-0573. PubMed DOI PMC
Attia A.B.E., Balasundaram G., Moothanchery M., Dinish U.S., Bi R., Ntziachristos V., Olivo M. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics. 2019;16:100144. doi: 10.1016/j.pacs.2019.100144. PubMed DOI PMC
Wang L.V., Hu S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science. 2012;335:1458–1462. doi: 10.1126/science.1216210. PubMed DOI PMC
Hudson S.V., Huang J.S., Yin W., Albeituni S., Rush J., Khanal A., Yan J., Ceresa B.P., Frieboes H.B., McNally L.R. Targeted noninvasive imaging of EGFR-expressing orthotopic pancreatic cancer using multispectral optoacoustic tomography. Cancer Res. 2014;74:6271–6279. doi: 10.1158/0008-5472.CAN-14-1656. PubMed DOI PMC
Chen Z., Dean-Ben X.L., Gottschalk S., Razansky D. Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents. Biomed. Opt. Express. 2018;9:2229–2239. doi: 10.1364/BOE.9.002229. PubMed DOI PMC
Bhutiani N., Kimbrough C.W., Burton N.C., Morscher S., Egger M., McMasters K., Woloszynska-Read A., El-Baz A., McNally L.R. Detection of microspheres in vivo using multispectral optoacoustic tomography. Biotech. Histochem. 2017;92:1–6. doi: 10.1080/10520295.2016.1251611. PubMed DOI PMC
MacCuaig W.M., Jones M.A., Abeyakoon O., McNally L.R. Development of Multispectral Optoacoustic Tomography as a Clinically Translatable Modality for Cancer Imaging. Radiol. Imaging Cancer. 2020;2:e200066. doi: 10.1148/rycan.2020200066. PubMed DOI PMC
Bagley A.F., Ludmir E.B., Maitra A., Minsky B.D., Li Smith G., Das P., Koong A.C., Holliday E.B., Taniguchi C.M., Katz M.H.G., et al. NBTXR3, a first-in-class radioenhancer for pancreatic ductal adenocarcinoma: Report of first patient experience. Clin. Transl. Radiat. Oncol. 2022;33:66–69. doi: 10.1016/j.ctro.2021.12.012. PubMed DOI PMC
Dennahy I.S., Han Z., MacCuaig W.M., Chalfant H.M., Condacse A., Hagood J.M., Claros-Sorto J.C., Razaq W., Holter-Chakrabarty J., Squires R., et al. Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics. 2022;14:917. doi: 10.3390/pharmaceutics14050917. PubMed DOI PMC
Herzog E., Taruttis A., Beziere N., Lutich A.A., Razansky D., Ntziachristos V. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology. 2012;263:461–468. doi: 10.1148/radiol.11111646. PubMed DOI
Gargiulo S., Albanese S., Mancini M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. Contrast Media Mol. Imaging. 2019;2019:5080267. doi: 10.1155/2019/5080267. PubMed DOI PMC
Ntziachristos V., Pleitez M.A., Aime S., Brindle K.M. Emerging Technologies to Image Tissue Metabolism. Cell Metab. 2019;29:518–538. doi: 10.1016/j.cmet.2018.09.004. PubMed DOI
Laramie M.D., Fouts B.L., MacCuaig W.M., Buabeng E., Jones M.A., Mukherjee P., Behkam B., McNally L.R., Henary M. Improved pentamethine cyanine nanosensors for optoacoustic imaging of pancreatic cancer. Sci. Rep. 2021;11:4366. doi: 10.1038/s41598-021-83658-3. PubMed DOI PMC
MacCuaig W.M., Fouts B.L., McNally M.W., Grizzle W.E., Chuong P., Samykutty A., Mukherjee P., Li M., Jasinski J.B., Behkam B., et al. Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS Appl. Mater. Interfaces. 2021;13:49614–49630. doi: 10.1021/acsami.1c09379. PubMed DOI PMC
Cao R., Kilroy J.P., Ning B., Wang T., Hossack J.A., Hu S. Multispectral photoacoustic microscopy based on an optical-acoustic objective. Photoacoustics. 2015;3:55–59. doi: 10.1016/j.pacs.2014.12.004. PubMed DOI PMC
Samykutty A., Thomas K.N., McNally M., Hagood J., Chiba A., Thomas A., McWilliams L., Behkam B., Zhan Y., Council-Troche M., et al. Simultaneous Detection of Multiple Tumor-targeted Gold Nanoparticles in HER2-Positive Breast Tumors Using Optoacoustic Imaging. Radiol. Imaging Cancer. 2023;5:e220180. doi: 10.1148/rycan.220180. PubMed DOI PMC
Chae H.D., Lee J.Y., Jang J.Y., Chang J.H., Kang J., Kang M.J., Han J.K. Photoacoustic Imaging for Differential Diagnosis of Benign Polyps versus Malignant Polyps of the Gallbladder: A Preliminary Study. Korean J. Radiol. 2017;18:821–827. doi: 10.3348/kjr.2017.18.5.821. PubMed DOI PMC
Kimbrough C.W., Hudson S., Khanal A., Egger M.E., McNally L.R. Orthotopic pancreatic tumors detected by optoacoustic tomography using Syndecan-1. J. Surg. Res. 2015;193:246–254. doi: 10.1016/j.jss.2014.06.045. PubMed DOI PMC
Bhutiani N., Grizzle W.E., Galandiuk S., Otali D., Dryden G.W., Egilmez N.K., McNally L.R. Noninvasive Imaging of Colitis Using Multispectral Optoacoustic Tomography. J. Nucl. Med. 2017;58:1009–1012. doi: 10.2967/jnumed.116.184705. PubMed DOI PMC
Harold K.M., MacCuaig W.M., Holter-Charkabarty J., Williams K., Hill K., Arreola A.X., Sekhri M., Carter S., Gomez-Gutierrez J., Salem G., et al. Advances in Imaging of Inflammation, Fibrosis, and Cancer in the Gastrointestinal Tract. Int. J. Mol. Sci. 2022;23:16109. doi: 10.3390/ijms232416109. PubMed DOI PMC
Ogawa M., Kosaka N., Choyke P.L., Kobayashi H. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res. 2009;69:1268–1272. doi: 10.1158/0008-5472.CAN-08-3116. PubMed DOI PMC
Chalfant H., Bonds M., Scott K., Condacse A., Dennahy I.S., Martin W.T., Little C., Edil B.H., McNally L.R., Jain A. Innovative Imaging Techniques Used to Evaluate Borderline-Resectable Pancreatic Adenocarcinoma. J. Surg. Res. 2023;284:42–53. doi: 10.1016/j.jss.2022.10.008. PubMed DOI PMC
Han Z., MacCuaig W.M., Gurcan M.N., Claros-Sorto J., Garwe T., Henson C., Holter-Chakrabarty J., Hannafon B., Chandra V., Wellberg E., et al. Dynamic 2-deoxy-D-glucose-enhanced multispectral optoacoustic tomography for assessing metabolism and vascular hemodynamics of breast cancer. Photoacoustics. 2023;32:100531. doi: 10.1016/j.pacs.2023.100531. PubMed DOI PMC
Bohndiek S.E., Sasportas L.S., Machtaler S., Jokerst J.V., Hori S., Gambhir S.S. Photoacoustic Tomography Detects Early Vessel Regression and Normalization During Ovarian Tumor Response to the Antiangiogenic Therapy Trebananib. J. Nucl. Med. 2015;56:1942–1947. doi: 10.2967/jnumed.115.160002. PubMed DOI PMC
Tummers W.S., Miller S.E., Teraphongphom N.T., Gomez A., Steinberg I., Huland D.M., Hong S., Kothapalli S.R., Hasan A., Ertsey R., et al. Intraoperative Pancreatic Cancer Detection using Tumor-Specific Multimodality Molecular Imaging. Ann. Surg. Oncol. 2018;25:1880–1888. doi: 10.1245/s10434-018-6453-2. PubMed DOI PMC
Napp J., Stammes M.A., Claussen J., Prevoo H., Sier C.F.M., Hoeben F.J.M., Robillard M.S., Vahrmeijer A.L., Devling T., Chan A.B., et al. Fluorescence- and multispectral optoacoustic imaging for an optimized detection of deeply located tumors in an orthotopic mouse model of pancreatic carcinoma. Int. J. Cancer. 2018;142:2118–2129. doi: 10.1002/ijc.31236. PubMed DOI
Nishimura M., Murayama Y., Harada K., Kamada Y., Morimura R., Ikoma H., Ichikawa D., Fujiwara H., Okamoto K., Otsuji E. Photodynamic Diagnosis of Hepatocellular Carcinoma Using 5-Aminolevulinic Acid. Anticancer Res. 2016;36:4569–4574. doi: 10.21873/anticanres.11005. PubMed DOI
Inoue Y., Tanaka R., Komeda K., Hirokawa F., Hayashi M., Uchiyama K. Fluorescence detection of malignant liver tumors using 5-aminolevulinic acid-mediated photodynamic diagnosis: Principles, technique, and clinical experience. World J. Surg. 2014;38:1786–1794. doi: 10.1007/s00268-014-2463-9. PubMed DOI
Fujiwara H., Takahara N., Tateishi K., Tanaka M., Kanai S., Kato H., Nakatsuka T., Yamamoto K., Kogure H., Arita J., et al. 5-Aminolevulinic acid-mediated photodynamic activity in patient-derived cholangiocarcinoma organoids. Surg. Oncol. 2020;35:484–490. doi: 10.1016/j.suronc.2020.10.011. PubMed DOI
Saito T., Ebihara Y., Li L., Shirosaki T., Iijima H., Tanaka K., Nakanishi Y., Asano T., Noji T., Kurashima Y., et al. A novel laparoscopic near-infrared fluorescence spectrum system for photodynamic diagnosis of peritoneal dissemination in pancreatic cancer. Photodiagn. Photodyn. Ther. 2021;33:102157. doi: 10.1016/j.pdpdt.2020.102157. PubMed DOI
Abrahamse H., Hamblin M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016;473:347–364. doi: 10.1042/BJ20150942. PubMed DOI PMC
Alsaab H.O., Alghamdi M.S., Alotaibi A.S., Alzhrani R., Alwuthaynani F., Althobaiti Y.S., Almalki A.H., Sau S., Iyer A.K. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers. 2020;12:2793. doi: 10.3390/cancers12102793. PubMed DOI PMC
Hanada Y., Pereira S.P., Pogue B., Maytin E.V., Hasan T., Linn B., Mangels-Dick T., Wang K.K. EUS-guided verteporfin photodynamic therapy for pancreatic cancer. Gastrointest. Endosc. 2021;94:179–186. doi: 10.1016/j.gie.2021.02.027. PubMed DOI PMC
Fang C., Zhang P., Qi X. Digital and intelligent liver surgery in the new era: Prospects and dilemmas. EBioMedicine. 2019;41:693–701. doi: 10.1016/j.ebiom.2019.02.017. PubMed DOI PMC
Felli E., Boleslawski E., Sommacale D., Scatton O., Brustia R., Schwarz L., Cherqui D., Zacharias T., Laurent A., Mabrut J.Y., et al. Paradigm shift: Should preoperative 3D reconstruction models become mandatory before hepatectomy for hepatocellular carcinoma (HCC)? Results of a multicenter prospective trial. HPB. 2023;25:293–300. doi: 10.1016/j.hpb.2022.11.007. PubMed DOI
Saito Y., Sugimoto M., Imura S., Morine Y., Ikemoto T., Iwahashi S., Yamada S., Shimada M. Intraoperative 3D Hologram Support with Mixed Reality Techniques in Liver Surgery. Ann. Surg. 2020;271:e4–e7. doi: 10.1097/SLA.0000000000003552. PubMed DOI
Liu J.P., Lerut J., Yang Z., Li Z.K., Zheng S.S. Three-dimensional modeling in complex liver surgery and liver transplantation. Hepatobiliary Pancreat. Dis. Int. 2022;21:318–324. doi: 10.1016/j.hbpd.2022.05.012. PubMed DOI
Maffione A.M., Rubello D., Caroli P., Colletti P.M., Matteucci F. Is It Time to Introduce PET/CT in Colon Cancer Guidelines? Clin. Nucl. Med. 2020;45:525–530. doi: 10.1097/RLU.0000000000003076. PubMed DOI
Sacks A., Peller P.J., Surasi D.S., Chatburn L., Mercier G., Subramaniam R.M. Value of PET/CT in the management of primary hepatobiliary tumors, part 2. AJR Am. J. Roentgenol. 2011;197:W260–W265. doi: 10.2214/AJR.11.6995. PubMed DOI
Tsang V.T.C., Li X., Wong T.T.W. A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations. Sensors. 2020;20:5595. doi: 10.3390/s20195595. PubMed DOI PMC
Zhao Z., Swartchick C.B., Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem. Soc. Rev. 2022;51:829–868. doi: 10.1039/D0CS00771D. PubMed DOI PMC
Kaplon H., Crescioli S., Chenoweth A., Visweswaraiah J., Reichert J.M. Antibodies to watch in 2023. MAbs. 2023;15:2153410. doi: 10.1080/19420862.2022.2153410. PubMed DOI PMC
Bever K.M., Sugar E.A., Bigelow E., Sharma R., Laheru D., Wolfgang C.L., Jaffee E.M., Anders R.A., De Jesus-Acosta A., Zheng L. The prognostic value of stroma in pancreatic cancer in patients receiving adjuvant therapy. HPB. 2015;17:292–298. doi: 10.1111/hpb.12334. PubMed DOI PMC
England C.G., Hernandez R., Eddine S.B., Cai W. Molecular Imaging of Pancreatic Cancer with Antibodies. Mol. Pharm. 2016;13:8–24. doi: 10.1021/acs.molpharmaceut.5b00626. PubMed DOI PMC
Catenacci D.V. Next-generation clinical trials: Novel strategies to address the challenge of tumor molecular heterogeneity. Mol. Oncol. 2015;9:967–996. doi: 10.1016/j.molonc.2014.09.011. PubMed DOI PMC
Mulder B.G.S., Koller M., Duiker E.W., Sarasqueta A.F., Burggraaf J., Meijer V.E., Vahrmeijer A.L., Hoogwater F.J.H., Bonsing B.A., van Dam G.M., et al. Intraoperative Molecular Fluorescence Imaging of Pancreatic Cancer by Targeting Vascular Endothelial Growth Factor: A Multicenter Feasibility Dose-Escalation Study. J. Nucl. Med. 2023;64:82–89. doi: 10.2967/jnumed.121.263773. PubMed DOI PMC
de Gooyer J.M., Elekonawo F.M., Bos D.L., van der Post R.S., Pèlegrin A., Framery B., Cailler F., Vahrmeijer A.L., de Wilt J.H., Rijpkema M. Multimodal CEA-targeted image-guided colorectal cancer surgery using 111In-labeled SGM-101. Clin. Cancer Res. 2020;26:5934–5942. doi: 10.1158/1078-0432.CCR-20-2255. PubMed DOI
Bannas P., Lenz A., Kunick V., Well L., Fumey W., Rissiek B., Haag F., Schmid J., Schutze K., Eichhoff A., et al. Molecular imaging of tumors with nanobodies and antibodies: Timing and dosage are crucial factors for improved in vivo detection. Contrast Media Mol. Imaging. 2015;10:367–378. doi: 10.1002/cmmi.1637. PubMed DOI
Baart V.M., van Manen L., Bhairosingh S.S., Vuijk F.A., Iamele L., de Jonge H., Scotti C., Resnati M., Cordfunke R.A., Kuppen P.J.K., et al. Side-by-Side Comparison of uPAR-Targeting Optical Imaging Antibodies and Antibody Fragments for Fluorescence-Guided Surgery of Solid Tumors. Mol. Imaging Biol. 2021;25:122–132. doi: 10.1007/s11307-021-01657-2. PubMed DOI PMC
Debie P., Devoogdt N., Hernot S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies. 2019;8:12. doi: 10.3390/antib8010012. PubMed DOI PMC
Zettlitz K.A., Tsai W.K., Knowles S.M., Kobayashi N., Donahue T.R., Reiter R.E., Wu A.M. Dual-Modality Immuno-PET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer Using an Anti-Prostate Stem Cell Antigen Cys-Diabody. J. Nucl. Med. 2018;59:1398–1405. doi: 10.2967/jnumed.117.207332. PubMed DOI PMC
Kimbrough C.W., Khanal A., Zeiderman M., Khanal B.R., Burton N.C., McMasters K.M., Vickers S.M., Grizzle W.E., McNally L.R. Targeting Acidity in Pancreatic Adenocarcinoma: Multispectral Optoacoustic Tomography Detects pH-Low Insertion Peptide Probes In Vivo. Clin. Cancer Res. 2015;21:4576–4585. doi: 10.1158/1078-0432.CCR-15-0314. PubMed DOI PMC
Jing R., Zhou X., Zhao J., Wei Y., Zuo B., You A., Rao Q., Gao X., Yang R., Chen L., et al. Fluorescent peptide highlights micronodules in murine hepatocellular carcinoma models and humans in vitro. Hepatology. 2018;68:1391–1411. doi: 10.1002/hep.29829. PubMed DOI
Shi J., Wang F., Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. Biophys. Rep. 2016;2:1–20. doi: 10.1007/s41048-016-0021-8. PubMed DOI PMC
Zhang G.Q., Zhong L.P., Yang N., Zhao Y.X. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J. Gastroenterol. 2019;25:3359–3369. doi: 10.3748/wjg.v25.i26.3359. PubMed DOI PMC
Li F.Q., Zhang S.X., An L.X., Gu Y.Q. In vivo molecular targeting effects of anti-Sp17- ICG-Der-02 on hepatocellular carcinoma evaluated by an optical imaging system. J. Exp. Clin. Cancer Res. 2011;30:25. doi: 10.1186/1756-9966-30-25. PubMed DOI PMC
Fu R., Carroll L., Yahioglu G., Aboagye E.O., Miller P.W. Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem. 2018;13:2466–2478. doi: 10.1002/cmdc.201800624. PubMed DOI PMC
Gurka M.K., Pender D., Chuong P., Fouts B.L., Sobelov A., McNally M.W., Mezera M., Woo S.Y., McNally L.R. Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J. Control. Release. 2016;231:60–67. doi: 10.1016/j.jconrel.2015.12.055. PubMed DOI PMC
Ingels A., Leguerney I., Cournede P.H., Irani J., Ferlicot S., Sebrie C., Benatsou B., Jourdain L., Pitre-Champagnat S., Patard J.J., et al. Ultrasound Molecular Imaging of Renal Cell Carcinoma: VEGFR targeted therapy monitored with VEGFR1 and FSHR targeted microbubbles. Sci. Rep. 2020;10:7308. doi: 10.1038/s41598-020-64433-2. PubMed DOI PMC
Nishino H., Turner M.A., Amirfakhri S., Lwin T.M., Hosseini M., Singer B.B., Hoffman R.M., Bouvet M. Proof of Principle of Combining Fluorescence-Guided Surgery with Photoimmunotherapy to Improve the Outcome of Pancreatic Cancer Therapy in an Orthotopic Mouse Model. Ann. Surg. Oncol. 2023;30:618–625. doi: 10.1245/s10434-022-12466-4. PubMed DOI PMC
Park J.Y., Hiroshima Y., Lee J.Y., Maawy A.A., Hoffman R.M., Bouvet M. MUC1 selectively targets human pancreatic cancer in orthotopic nude mouse models. PLoS ONE. 2015;10:e0122100. doi: 10.1371/journal.pone.0122100. PubMed DOI PMC
Handgraaf H.J.M., Boonstra M.C., Prevoo H., Kuil J., Bordo M.W., Boogerd L.S.F., Sibinga Mulder B.G., Sier C.F.M., Vinkenburg-van Slooten M.L., Valentijn A., et al. Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget. 2017;8:21054–21066. doi: 10.18632/oncotarget.15486. PubMed DOI PMC
Boonstra M.C., Tolner B., Schaafsma B.E., Boogerd L.S., Prevoo H.A., Bhavsar G., Kuppen P.J., Sier C.F., Bonsing B.A., Frangioni J.V., et al. Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors. Int. J. Cancer. 2015;137:1910–1920. doi: 10.1002/ijc.29571. PubMed DOI PMC
Deng H., Shang W.T., Lu G.H., Guo P.Y., Ai T., Fang C.H., Tian J. Targeted and Multifunctional Technology for Identification between Hepatocellular Carcinoma and Liver Cirrhosis. ACS Appl. Mater. Interfaces. 2019;11:14526–14537. doi: 10.1021/acsami.8b20600. PubMed DOI
Yan H., Gao X., Zhang Y., Chang W., Li J., Li X., Du Q., Li C. Imaging Tiny Hepatic Tumor Xenografts via Endoglin-Targeted Paramagnetic/Optical Nanoprobe. ACS Appl. Mater. Interfaces. 2018;10:17047–17057. doi: 10.1021/acsami.8b02648. PubMed DOI
Zeng Z., Chen J., Luo S., Dong J., Hu H., Yang Z., Feng X., Liu Y., Liu B., Pan G., et al. Targeting and imaging colorectal cancer by activatable cell-penetrating peptides. Am. J. Transl. Res. 2020;12:1754–1766. PubMed PMC
Jin Y., Wang K., Tian J. Preoperative Examination and Intraoperative Identification of Hepatocellular Carcinoma Using a Targeted Bimodal Imaging Probe. Bioconjug. Chem. 2018;29:1475–1484. doi: 10.1021/acs.bioconjchem.8b00161. PubMed DOI
Hernandez R., Sun H., England C.G., Valdovinos H.F., Ehlerding E.B., Barnhart T.E., Yang Y., Cai W. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody. Theranostics. 2016;6:1918–1933. doi: 10.7150/thno.15568. PubMed DOI PMC
Hollandsworth H.M., Nishino H., Turner M., Amirfakhri S., Filemoni F., Hoffman R.M., Yazaki P.J., Bouvet M. Humanized Fluorescent Tumor-associated Glycoprotein-72 Antibody Selectively Labels Colon-cancer Liver Metastases in Orthotopic Mouse Models. In Vivo. 2020;34:2303–2307. doi: 10.21873/invivo.12042. PubMed DOI PMC
Zeng C., Shang W., Wang K., Chi C., Jia X., Fang C., Yang D., Ye J., Fang C., Tian J. Intraoperative Identification of Liver Cancer Microfoci Using a Targeted Near-Infrared Fluorescent Probe for Imaging-Guided Surgery. Sci. Rep. 2016;6:21959. doi: 10.1038/srep21959. PubMed DOI PMC
Tang C., Du Y., Liang Q., Cheng Z., Tian J. Development of a Novel Histone Deacetylase-Targeted Near-Infrared Probe for Hepatocellular Carcinoma Imaging and Fluorescence Image-Guided Surgery. Mol. Imaging Biol. 2020;22:476–485. doi: 10.1007/s11307-019-01389-4. PubMed DOI
Hiroshima Y., Lwin T.M., Murakami T., Mawy A.A., Kuniya T., Chishima T., Endo I., Clary B.M., Hoffman R.M., Bouvet M. Effective fluorescence-guided surgery of liver metastasis using a fluorescent anti-CEA antibody. J. Surg. Oncol. 2016;114:951–958. doi: 10.1002/jso.24462. PubMed DOI PMC
Zhao M., Dong L., Liu Z., Yang S., Wu W., Lin J. In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe. Quant. Imaging Med. Surg. 2018;8:151–160. doi: 10.21037/qims.2018.01.09. PubMed DOI PMC
Qi S., Liu G., Chen J., Cao P., Lei X., Ding C., Chen G., Zhang Y., Wang L. Targeted Multifunctional Nanoplatform for Imaging-Guided Precision Diagnosis and Photothermal/Photodynamic Therapy of Orthotopic Hepatocellular Carcinoma. Int. J. Nanomed. 2022;17:3777–3792. doi: 10.2147/IJN.S377080. PubMed DOI PMC
Chen Y., Lu J., Yang J., Hao K., Li M. Investigation of Alpha-Fetoprotein Antibody Modified Fluorescent Magnetic Probe on HepG(2) Cell and Cancer Model Mouse. J. Nanosci. Nanotechnol. 2020;20:5147–5150. doi: 10.1166/jnn.2020.18541. PubMed DOI
Park J.Y., Murakami T., Lee J.Y., Zhang Y., Hoffman R.M., Bouvet M. Fluorescent-Antibody Targeting of Insulin-Like Growth Factor-1 Receptor Visualizes Metastatic Human Colon Cancer in Orthotopic Mouse Models. PLoS ONE. 2016;11:e0146504. doi: 10.1371/journal.pone.0146504. PubMed DOI PMC
Wu L.Y., Ishigaki Y., Hu Y.X., Sugimoto K., Zeng W.H., Harimoto T., Sun Y.D., He J., Suzuki T., Jiang X.Q., et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 2020;11:446. doi: 10.1038/s41467-020-14307-y. PubMed DOI PMC
Brachi G., Bussolino F., Ciardelli G., Mattu C. Nanomedicine for Imaging and Therapy of Pancreatic Adenocarcinoma. Front. Bioeng. Biotechnol. 2019;7:307. doi: 10.3389/fbioe.2019.00307. PubMed DOI PMC
Valderrama-Trevino A.I., Barrera-Mera B., Ceballos-Villalva J.C., Montalvo-Jave E.E. Hepatic Metastasis from Colorectal Cancer. Euroasian J. Hepatogastroenterol. 2017;7:166–175. doi: 10.5005/jp-journals-10018-1241. PubMed DOI PMC
Chan A., Zhang W.Y., Chok K., Dai J., Ji R., Kwan C., Man N., Poon R., Lo C.M. ALPPS Versus Portal Vein Embolization for Hepatitis-related Hepatocellular Carcinoma: A Changing Paradigm in Modulation of Future Liver Remnant Before Major Hepatectomy. Ann. Surg. 2021;273:957–965. doi: 10.1097/SLA.0000000000003433. PubMed DOI
Joliat G.R., Kobayashi K., Hasegawa K., Thomson J.E., Padbury R., Scott M., Brustia R., Scatton O., Tran Cao H.S., Vauthey J.N., et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations 2022. World J. Surg. 2023;47:11–34. doi: 10.1007/s00268-022-06732-5. PubMed DOI PMC
De Simoni O., Scarpa M., Tonello M., Pilati P., Tolin F., Spolverato Y., Gruppo M. Oligometastatic Pancreatic Cancer to the Liver in the Era of Neoadjuvant Chemotherapy: Which Role for Conversion Surgery? A Systematic Review and Meta-Analysis. Cancers. 2020;12:3402. doi: 10.3390/cancers12113402. PubMed DOI PMC
Martin J., Petrillo A., Smyth E.C., Shaida N., Khwaja S., Cheow H.K., Duckworth A., Heister P., Praseedom R., Jah A., et al. Colorectal liver metastases: Current management and future perspectives. World J. Clin. Oncol. 2020;11:761–808. doi: 10.5306/wjco.v11.i10.761. PubMed DOI PMC