Intraoperative Imaging in Hepatopancreatobiliary Surgery

. 2023 Jul 20 ; 15 (14) : . [epub] 20230720

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37509355

Grantová podpora
R01 CA205941 NCI NIH HHS - United States
R01CA205941 NCI NIH HHS - United States
U54CA118949 NCI NIH HHS - United States
R01 EB034731 NIBIB NIH HHS - United States
f31ca261044 NCI NIH HHS - United States
p30ca225520 NCI NIH HHS - United States
R01EB034731 NCI NIH HHS - United States
F31 CA261044 NCI NIH HHS - United States
P30 CA225520 NCI NIH HHS - United States

Hepatopancreatobiliary surgery belongs to one of the most complex fields of general surgery. An intricate and vital anatomy is accompanied by difficult distinctions of tumors from fibrosis and inflammation; the identification of precise tumor margins; or small, even disappearing, lesions on currently available imaging. The routine implementation of ultrasound use shifted the possibilities in the operating room, yet more precision is necessary to achieve negative resection margins. Modalities utilizing fluorescent-compatible dyes have proven their role in hepatopancreatobiliary surgery, although this is not yet a routine practice, as there are many limitations. Modalities, such as photoacoustic imaging or 3D holograms, are emerging but are mostly limited to preclinical settings. There is a need to identify and develop an ideal contrast agent capable of differentiating between malignant and benign tissue and to report on the prognostic benefits of implemented intraoperative imaging in order to navigate clinical translation. This review focuses on existing and developing imaging modalities for intraoperative use, tailored to the needs of hepatopancreatobiliary cancers. We will also cover the application of these imaging techniques to theranostics to achieve combined diagnostic and therapeutic potential.

Zobrazit více v PubMed

Fukukura Y., Kumagae Y., Fujisaki Y., Yamagishi R., Nakamura S., Kamizono J., Nakajo M., Kamimura K., Nagano H., Takumi K., et al. Adding Delayed Phase Images to Dual-Phase Contrast-Enhanced CT Increases Sensitivity for Small Pancreatic Ductal Adenocarcinoma. AJR Am. J. Roentgenol. 2021;217:888–897. doi: 10.2214/AJR.20.25430. PubMed DOI

Donato H., Franca M., Candelaria I., Caseiro-Alves F. Liver MRI: From basic protocol to advanced techniques. Eur. J. Radiol. 2017;93:30–39. doi: 10.1016/j.ejrad.2017.05.028. PubMed DOI

Choi J.Y., Lee J.M., Sirlin C.B. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: Part I. Development, growth, and spread: Key pathologic and imaging aspects. Radiology. 2014;272:635–654. doi: 10.1148/radiol.14132361. PubMed DOI PMC

Choi J.Y., Lee J.M., Sirlin C.B. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: Part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology. 2014;273:30–50. doi: 10.1148/radiol.14132362. PubMed DOI PMC

Gonzalo-Marin J., Vila J.J., Perez-Miranda M. Role of endoscopic ultrasound in the diagnosis of pancreatic cancer. World J. Gastrointest. Oncol. 2014;6:360–368. doi: 10.4251/wjgo.v6.i9.360. PubMed DOI PMC

Voskuil F.J., Vonk J., van der Vegt B., Kruijff S., Ntziachristos V., van der Zaag P.J., Witjes M.J.H., van Dam G.M. Intraoperative imaging in pathology-assisted surgery. Nat. Biomed. Eng. 2022;6:503–514. doi: 10.1038/s41551-021-00808-8. PubMed DOI

Nelson D.W., Blanchard T.H., Causey M.W., Homann J.F., Brown T.A. Examining the accuracy and clinical usefulness of intraoperative frozen section analysis in the management of pancreatic lesions. Am. J. Surg. 2013;205:613–617. doi: 10.1016/j.amjsurg.2013.01.015. PubMed DOI

Liu F.S., Wang H.T., Ma W.J., Li J.H., Liu Y.Y., Tang S.L., Li K., Jiang P., Yang Z.Y., He Y.M., et al. Short- and Long-Term Outcomes of Indocyanine Green Fluorescence Navigation-Versus Conventional-Laparoscopic Hepatectomy for Hepatocellular Carcinoma: A Propensity Score-Matched, Retrospective, Cohort Study. Ann. Surg. Oncol. 2023;30:1991–2002. doi: 10.1245/s10434-022-13027-5. PubMed DOI PMC

Qin R., Kendrick M.L., Wolfgang C.L., Edil B.H., Palanivelu C., Parks R.W., Yang Y., He J., Zhang T., Mou Y., et al. International expert consensus on laparoscopic pancreaticoduodenectomy. Hepatobiliary Surg. Nutr. 2020;9:464–483. doi: 10.21037/hbsn-20-446. PubMed DOI PMC

Stummer W., Pichlmeier U., Meinel T., Wiestler O.D., Zanella F., Reulen H.J., Group A.L.-G.S. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401. doi: 10.1016/S1470-2045(06)70665-9. PubMed DOI

van Dam G.M., Themelis G., Crane L.M., Harlaar N.J., Pleijhuis R.G., Kelder W., Sarantopoulos A., de Jong J.S., Arts H.J., van der Zee A.G., et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: First in-human results. Nat. Med. 2011;17:1315–1319. doi: 10.1038/nm.2472. PubMed DOI

Bartos A., Iancu I., Ciobanu L., Badea R., Sparchez Z., Bartos D.M. Intraoperative ultrasound in liver and pancreatic surgery. Med. Ultrason. 2021;23:319–328. doi: 10.11152/mu-2853. PubMed DOI

Lee J.Y., Kim Y.H., Roh Y.H., Roh K.B., Kim K.W., Kang S.H., Baek Y.H., Lee S.W., Han S.Y., Kwon H.J., et al. Intraoperative radiofrequency ablation for hepatocellular carcinoma in 112 patients with cirrhosis: A surgeon’s view. Ann. Surg. Treat. Res. 2016;90:147–156. doi: 10.4174/astr.2016.90.3.147. PubMed DOI PMC

Torzilli G., Leoni P., Gendarini A., Calliada F., Olivari N., Makuuchi M. Ultrasound-guided liver resections for hepatocellular carcinoma. Hepatogastroenterology. 2002;49:21–27. PubMed

Sietses C., Meijerink M.R., Meijer S., van den Tol M.P. The impact of intraoperative ultrasonography on the surgical treatment of patients with colorectal liver metastases. Surg. Endosc. 2010;24:1917–1922. doi: 10.1007/s00464-009-0874-8. PubMed DOI PMC

Hoch G., Croise-Laurent V., Germain A., Brunaud L., Bresler L., Ayav A. Is intraoperative ultrasound still useful for the detection of colorectal cancer liver metastases? HPB. 2015;17:514–519. doi: 10.1111/hpb.12393. PubMed DOI PMC

Torzilli G., Montorsi M., Donadon M., Palmisano A., Del Fabbro D., Gambetti A., Olivari N., Makuuchi M. “Radical but conservative” is the main goal for ultrasonography-guided liver resection: Prospective validation of this approach. J. Am. Coll. Surg. 2005;201:517–528. doi: 10.1016/j.jamcollsurg.2005.04.026. PubMed DOI

Sahani D.V., Kalva S.P., Tanabe K.K., Hayat S.M., O’Neill M.J., Halpern E.F., Saini S., Mueller P.R. Intraoperative US in patients undergoing surgery for liver neoplasms: Comparison with MR imaging. Radiology. 2004;232:810–814. doi: 10.1148/radiol.2323030896. PubMed DOI

Torzilli G., Del Fabbro D., Palmisano A., Donadon M., Bianchi P., Roncalli M., Balzarini L., Montorsi M. Contrast-enhanced intraoperative ultrasonography during hepatectomies for colorectal cancer liver metastases. J. Gastrointest. Surg. 2005;9:1148–1153; discussion 1153–1144. doi: 10.1016/j.gassur.2005.08.016. PubMed DOI

Shah A.J., Callaway M., Thomas M.G., Finch-Jones M.D. Contrast-enhanced intraoperative ultrasound improves detection of liver metastases during surgery for primary colorectal cancer. HPB. 2010;12:181–187. doi: 10.1111/j.1477-2574.2009.00141.x. PubMed DOI PMC

Parks K.R., Hagopian E.J. Introduction: The Importance of Ultrasound in a Surgical Practice. In: Hagopian E.J., Machi J., editors. Abdominal Ultrasound for Surgeons. Springer; New York, NY, USA: 2014. pp. 3–6.

Claudon M., Dietrich C.F., Choi B.I., Cosgrove D.O., Kudo M., Nolsoe C.P., Piscaglia F., Wilson S.R., Barr R.G., Chammas M.C., et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver--update 2012: A WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultraschall Med. 2013;34:11–29. doi: 10.1055/s-0032-1325499. PubMed DOI

Peloso A., Franchi E., Canepa M.C., Barbieri L., Briani L., Ferrario J., Bianco C., Quaretti P., Brugnatelli S., Dionigi P., et al. Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer. HPB. 2013;15:928–934. doi: 10.1111/hpb.12057. PubMed DOI PMC

van der Steen K., Bosscha K., Lips D.J. The value of laparoscopic intraoperative ultrasound of the liver by the surgeon. Ann. Laparosc. Endosc. Surg. 2021;6:17. doi: 10.21037/ales-20-106. DOI

Ishizawa T., Bandai Y., Ijichi M., Kaneko J., Hasegawa K., Kokudo N. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br. J. Surg. 2010;97:1369–1377. doi: 10.1002/bjs.7125. PubMed DOI

Ashitate Y., Stockdale A., Choi H.S., Laurence R.G., Frangioni J.V. Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy. J. Surg. Res. 2012;176:7–13. doi: 10.1016/j.jss.2011.06.027. PubMed DOI PMC

Aoki T., Murakami M., Yasuda D., Shimizu Y., Kusano T., Matsuda K., Niiya T., Kato H., Murai N., Otsuka K., et al. Intraoperative fluorescent imaging using indocyanine green for liver mapping and cholangiography. J. Hepatobiliary Pancreat. Sci. 2010;17:590–594. doi: 10.1007/s00534-009-0197-0. PubMed DOI

van Manen L., Handgraaf H.J.M., Diana M., Dijkstra J., Ishizawa T., Vahrmeijer A.L., Mieog J.S.D. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J. Surg. Oncol. 2018;118:283–300. doi: 10.1002/jso.25105. PubMed DOI PMC

Detter C., Wipper S., Russ D., Iffland A., Burdorf L., Thein E., Wegscheider K., Reichenspurner H., Reichart B. Fluorescent cardiac imaging: A novel intraoperative method for quantitative assessment of myocardial perfusion during graded coronary artery stenosis. Circulation. 2007;116:1007–1014. doi: 10.1161/CIRCULATIONAHA.106.655936. PubMed DOI

Dorshow R.B., Bugaj J.E., Burleigh B.D., Duncan J.R., Johnson M.A., Jones W.B. Noninvasive fluorescence detection of hepatic and renal function. J. Biomed. Opt. 1998;3:340–345. doi: 10.1117/1.429854. PubMed DOI

Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Borresen-Dale A.L., et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477. PubMed DOI PMC

Debie P., Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front. Pharmacol. 2019;10:510. doi: 10.3389/fphar.2019.00510. PubMed DOI PMC

Cai S., Yang S., Lv W., Geng C., Gu W., Duan W., Wang W., Huang Z., Dong J. Sustained methylene blue staining to guide anatomic hepatectomy for hepatocellular carcinoma: Initial experience and technical details. Surgery. 2015;158:121–127. doi: 10.1016/j.surg.2015.01.018. PubMed DOI

Tuysuz U., Aktas H., Bati I.B., Emiroglu R. The role of Intraoperative cholangiography (IOC) and methylene blue tests in reducing bile leakage after living donor hepatectomy. Asian J. Surg. 2021;44:147–152. doi: 10.1016/j.asjsur.2020.04.001. PubMed DOI

Van Keulen S., Hom M., White H., Rosenthal E.L., Baik F.M. The Evolution of Fluorescence-Guided Surgery. Mol. Imaging Biol. 2023;25:36–45. doi: 10.1007/s11307-022-01772-8. PubMed DOI PMC

Wang X., Teh C.S.C., Ishizawa T., Aoki T., Cavallucci D., Lee S.Y., Panganiban K.M., Perini M.V., Shah S.R., Wang H., et al. Consensus Guidelines for the Use of Fluorescence Imaging in Hepatobiliary Surgery. Ann. Surg. 2021;274:97–106. doi: 10.1097/SLA.0000000000004718. PubMed DOI

Ishizawa T., Bandai Y., Kokudo N. Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: An initial experience. Arch. Surg. 2009;144:381–382. doi: 10.1001/archsurg.2009.9. PubMed DOI

Pesce A., Piccolo G., La Greca G., Puleo S. Utility of fluorescent cholangiography during laparoscopic cholecystectomy: A systematic review. World J. Gastroenterol. 2015;21:7877–7883. doi: 10.3748/wjg.v21.i25.7877. PubMed DOI PMC

Gene Skrabec C., Pardo Aranda F., Espin F., Cremades M., Navines J., Zarate A., Cugat E. Fluorescent cholangiography with direct injection of indocyanine green (ICG) into the gallbladder: A safety method to outline biliary anatomy. Langenbecks Arch. Surg. 2020;405:827–832. doi: 10.1007/s00423-020-01967-z. PubMed DOI

Ishizawa T., Masuda K., Urano Y., Kawaguchi Y., Satou S., Kaneko J., Hasegawa K., Shibahara J., Fukayama M., Tsuji S., et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann. Surg. Oncol. 2014;21:440–448. doi: 10.1245/s10434-013-3360-4. PubMed DOI

Wakabayashi T., Cacciaguerra A.B., Abe Y., Bona E.D., Nicolini D., Mocchegiani F., Kabeshima Y., Vivarelli M., Wakabayashi G., Kitagawa Y. Indocyanine Green Fluorescence Navigation in Liver Surgery: A Systematic Review on Dose and Timing of Administration. Ann. Surg. 2022;275:1025–1034. doi: 10.1097/SLA.0000000000005406. PubMed DOI

van der Vorst J.R., Schaafsma B.E., Hutteman M., Verbeek F.P.R., Liefers G.J., Hartgrink H.H., Smit V.T.H.B.M., Lowik C.W.G.M., van de Velde C.J.H., Frangioni J.V., et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer. 2013;119:3411–3418. doi: 10.1002/cncr.28203. PubMed DOI PMC

Patel I., Bartlett D., Dasari B.V., Chatzizacharias N., Isaac J., Marudanayagam R., Mirza D.F., Roberts J.K., Sutcliffe R.P. Detection of Colorectal Liver Metastases Using Near-Infrared Fluorescence Imaging During Hepatectomy: Prospective Single Centre UK Study. J. Gastrointest. Cancer. 2022 doi: 10.1007/s12029-022-00836-w. PubMed DOI

Ishizawa T., Zuker N.B., Kokudo N., Gayet B. Positive and negative staining of hepatic segments by use of fluorescent imaging techniques during laparoscopic hepatectomy. Arch Surg. 2012;147:393–394. doi: 10.1001/archsurg.2012.59. PubMed DOI

Newton A.D., Predina J.D., Shin M.H., Frenzel-Sulyok L.G., Vollmer C.M., Drebin J.A., Singhal S., Lee M.K.T. Intraoperative Near-infrared Imaging Can Identify Neoplasms and Aid in Real-time Margin Assessment During Pancreatic Resection. Ann. Surg. 2019;270:12–20. doi: 10.1097/SLA.0000000000003201. PubMed DOI PMC

Hutteman M., van der Vorst J.R., Mieog J.S., Bonsing B.A., Hartgrink H.H., Kuppen P.J., Lowik C.W., Frangioni J.V., van de Velde C.J., Vahrmeijer A.L. Near-infrared fluorescence imaging in patients undergoing pancreaticoduodenectomy. Eur. Surg. Res. 2011;47:90–97. doi: 10.1159/000329411. PubMed DOI PMC

Lohman R.F., Ozturk C.N., Ozturk C., Jayaprakash V., Djohan R. An Analysis of Current Techniques Used for Intraoperative Flap Evaluation. Ann. Plast. Surg. 2015;75:679–685. doi: 10.1097/SAP.0000000000000235. PubMed DOI

Shirata C., Kawaguchi Y., Kobayashi K., Kobayashi Y., Arita J., Akamatsu N., Kaneko J., Sakamoto Y., Kokudo N., Hasegawa K. Usefulness of indocyanine green-fluorescence imaging for real-time visualization of pancreas neuroendocrine tumor and cystic neoplasm. J. Surg. Oncol. 2018;118:1012–1020. doi: 10.1002/jso.25231. PubMed DOI

Paiella S., De Pastena M., Landoni L., Esposito A., Casetti L., Miotto M., Ramera M., Salvia R., Secchettin E., Bonamini D., et al. Is there a role for near-infrared technology in laparoscopic resection of pancreatic neuroendocrine tumors? Results of the COLPAN “colour-and-resect the pancreas” study. Surg. Endosc. 2017;31:4478–4484. doi: 10.1007/s00464-017-5501-5. PubMed DOI

Rompianesi G., Montalti R., Giglio M.C., Ceresa C.D.L., Nasto R.A., De Simone G., Troisi R.I. Systematic review, meta-analysis and single-centre experience of the diagnostic accuracy of intraoperative near-infrared indocyanine green-fluorescence in detecting pancreatic tumours. HPB. 2022;24:1823–1831. doi: 10.1016/j.hpb.2022.05.004. PubMed DOI

Liberale G., Vankerckhove S., Caldon M.G., Ahmed B., Moreau M., Nakadi I.E., Larsimont D., Donckier V., Bourgeois P., Group R., et al. Fluorescence Imaging After Indocyanine Green Injection for Detection of Peritoneal Metastases in Patients Undergoing Cytoreductive Surgery for Peritoneal Carcinomatosis from Colorectal Cancer: A Pilot Study. Ann. Surg. 2016;264:1110–1115. doi: 10.1097/SLA.0000000000001618. PubMed DOI

Leonhardt C.S., Niesen W., Kalkum E., Klotz R., Hank T., Buchler M.W., Strobel O., Probst P. Prognostic relevance of the revised R status definition in pancreatic cancer: Meta-analysis. BJS Open. 2022;6:zrac010. doi: 10.1093/bjsopen/zrac010. PubMed DOI PMC

Verbeke C.S., Menon K.V. Redefining resection margin status in pancreatic cancer. HPB. 2009;11:282–289. doi: 10.1111/j.1477-2574.2009.00055.x. PubMed DOI PMC

Strobel O., Hank T., Hinz U., Bergmann F., Schneider L., Springfeld C., Jager D., Schirmacher P., Hackert T., Buchler M.W. Pancreatic Cancer Surgery: The New R-status Counts. Ann. Surg. 2017;265:565–573. doi: 10.1097/SLA.0000000000001731. PubMed DOI

Hu Z., Fang C., Li B., Zhang Z., Cao C., Cai M., Su S., Sun X., Shi X., Li C., et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 2020;4:259–271. doi: 10.1038/s41551-019-0494-0. PubMed DOI

Lauwerends L.J., van Driel P., Baatenburg de Jong R.J., Hardillo J.A.U., Koljenovic S., Puppels G., Mezzanotte L., Lowik C., Rosenthal E.L., Vahrmeijer A.L., et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 2021;22:e186–e195. doi: 10.1016/S1470-2045(20)30600-8. PubMed DOI

Hoogstins C.E., Boogerd L.S., Sibinga Mulder B.G., Mieog J.S.D., Swijnenburg R.J., van de Velde C.J., Farina Sarasqueta A., Bonsing B.A., Framery B., Pèlegrin A., et al. Image-Guided Surgery in Patients with Pancreatic Cancer: First Results of a Clinical Trial Using SGM-101, a Novel Carcinoembryonic Antigen-Targeting, Near-Infrared Fluorescent Agent. Ann. Surg. Oncol. 2018;25:3350–3357. doi: 10.1245/s10434-018-6655-7. PubMed DOI PMC

McNally L.R., Mezera M., Morgan D.E., Frederick P.J., Yang E.S., Eltoum I.E., Grizzle W.E. Current and Emerging Clinical Applications of Multispectral Optoacoustic Tomography (MSOT) in Oncology. Clin. Cancer Res. 2016;22:3432–3439. doi: 10.1158/1078-0432.CCR-16-0573. PubMed DOI PMC

Attia A.B.E., Balasundaram G., Moothanchery M., Dinish U.S., Bi R., Ntziachristos V., Olivo M. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics. 2019;16:100144. doi: 10.1016/j.pacs.2019.100144. PubMed DOI PMC

Wang L.V., Hu S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science. 2012;335:1458–1462. doi: 10.1126/science.1216210. PubMed DOI PMC

Hudson S.V., Huang J.S., Yin W., Albeituni S., Rush J., Khanal A., Yan J., Ceresa B.P., Frieboes H.B., McNally L.R. Targeted noninvasive imaging of EGFR-expressing orthotopic pancreatic cancer using multispectral optoacoustic tomography. Cancer Res. 2014;74:6271–6279. doi: 10.1158/0008-5472.CAN-14-1656. PubMed DOI PMC

Chen Z., Dean-Ben X.L., Gottschalk S., Razansky D. Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents. Biomed. Opt. Express. 2018;9:2229–2239. doi: 10.1364/BOE.9.002229. PubMed DOI PMC

Bhutiani N., Kimbrough C.W., Burton N.C., Morscher S., Egger M., McMasters K., Woloszynska-Read A., El-Baz A., McNally L.R. Detection of microspheres in vivo using multispectral optoacoustic tomography. Biotech. Histochem. 2017;92:1–6. doi: 10.1080/10520295.2016.1251611. PubMed DOI PMC

MacCuaig W.M., Jones M.A., Abeyakoon O., McNally L.R. Development of Multispectral Optoacoustic Tomography as a Clinically Translatable Modality for Cancer Imaging. Radiol. Imaging Cancer. 2020;2:e200066. doi: 10.1148/rycan.2020200066. PubMed DOI PMC

Bagley A.F., Ludmir E.B., Maitra A., Minsky B.D., Li Smith G., Das P., Koong A.C., Holliday E.B., Taniguchi C.M., Katz M.H.G., et al. NBTXR3, a first-in-class radioenhancer for pancreatic ductal adenocarcinoma: Report of first patient experience. Clin. Transl. Radiat. Oncol. 2022;33:66–69. doi: 10.1016/j.ctro.2021.12.012. PubMed DOI PMC

Dennahy I.S., Han Z., MacCuaig W.M., Chalfant H.M., Condacse A., Hagood J.M., Claros-Sorto J.C., Razaq W., Holter-Chakrabarty J., Squires R., et al. Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics. 2022;14:917. doi: 10.3390/pharmaceutics14050917. PubMed DOI PMC

Herzog E., Taruttis A., Beziere N., Lutich A.A., Razansky D., Ntziachristos V. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology. 2012;263:461–468. doi: 10.1148/radiol.11111646. PubMed DOI

Gargiulo S., Albanese S., Mancini M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. Contrast Media Mol. Imaging. 2019;2019:5080267. doi: 10.1155/2019/5080267. PubMed DOI PMC

Ntziachristos V., Pleitez M.A., Aime S., Brindle K.M. Emerging Technologies to Image Tissue Metabolism. Cell Metab. 2019;29:518–538. doi: 10.1016/j.cmet.2018.09.004. PubMed DOI

Laramie M.D., Fouts B.L., MacCuaig W.M., Buabeng E., Jones M.A., Mukherjee P., Behkam B., McNally L.R., Henary M. Improved pentamethine cyanine nanosensors for optoacoustic imaging of pancreatic cancer. Sci. Rep. 2021;11:4366. doi: 10.1038/s41598-021-83658-3. PubMed DOI PMC

MacCuaig W.M., Fouts B.L., McNally M.W., Grizzle W.E., Chuong P., Samykutty A., Mukherjee P., Li M., Jasinski J.B., Behkam B., et al. Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS Appl. Mater. Interfaces. 2021;13:49614–49630. doi: 10.1021/acsami.1c09379. PubMed DOI PMC

Cao R., Kilroy J.P., Ning B., Wang T., Hossack J.A., Hu S. Multispectral photoacoustic microscopy based on an optical-acoustic objective. Photoacoustics. 2015;3:55–59. doi: 10.1016/j.pacs.2014.12.004. PubMed DOI PMC

Samykutty A., Thomas K.N., McNally M., Hagood J., Chiba A., Thomas A., McWilliams L., Behkam B., Zhan Y., Council-Troche M., et al. Simultaneous Detection of Multiple Tumor-targeted Gold Nanoparticles in HER2-Positive Breast Tumors Using Optoacoustic Imaging. Radiol. Imaging Cancer. 2023;5:e220180. doi: 10.1148/rycan.220180. PubMed DOI PMC

Chae H.D., Lee J.Y., Jang J.Y., Chang J.H., Kang J., Kang M.J., Han J.K. Photoacoustic Imaging for Differential Diagnosis of Benign Polyps versus Malignant Polyps of the Gallbladder: A Preliminary Study. Korean J. Radiol. 2017;18:821–827. doi: 10.3348/kjr.2017.18.5.821. PubMed DOI PMC

Kimbrough C.W., Hudson S., Khanal A., Egger M.E., McNally L.R. Orthotopic pancreatic tumors detected by optoacoustic tomography using Syndecan-1. J. Surg. Res. 2015;193:246–254. doi: 10.1016/j.jss.2014.06.045. PubMed DOI PMC

Bhutiani N., Grizzle W.E., Galandiuk S., Otali D., Dryden G.W., Egilmez N.K., McNally L.R. Noninvasive Imaging of Colitis Using Multispectral Optoacoustic Tomography. J. Nucl. Med. 2017;58:1009–1012. doi: 10.2967/jnumed.116.184705. PubMed DOI PMC

Harold K.M., MacCuaig W.M., Holter-Charkabarty J., Williams K., Hill K., Arreola A.X., Sekhri M., Carter S., Gomez-Gutierrez J., Salem G., et al. Advances in Imaging of Inflammation, Fibrosis, and Cancer in the Gastrointestinal Tract. Int. J. Mol. Sci. 2022;23:16109. doi: 10.3390/ijms232416109. PubMed DOI PMC

Ogawa M., Kosaka N., Choyke P.L., Kobayashi H. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res. 2009;69:1268–1272. doi: 10.1158/0008-5472.CAN-08-3116. PubMed DOI PMC

Chalfant H., Bonds M., Scott K., Condacse A., Dennahy I.S., Martin W.T., Little C., Edil B.H., McNally L.R., Jain A. Innovative Imaging Techniques Used to Evaluate Borderline-Resectable Pancreatic Adenocarcinoma. J. Surg. Res. 2023;284:42–53. doi: 10.1016/j.jss.2022.10.008. PubMed DOI PMC

Han Z., MacCuaig W.M., Gurcan M.N., Claros-Sorto J., Garwe T., Henson C., Holter-Chakrabarty J., Hannafon B., Chandra V., Wellberg E., et al. Dynamic 2-deoxy-D-glucose-enhanced multispectral optoacoustic tomography for assessing metabolism and vascular hemodynamics of breast cancer. Photoacoustics. 2023;32:100531. doi: 10.1016/j.pacs.2023.100531. PubMed DOI PMC

Bohndiek S.E., Sasportas L.S., Machtaler S., Jokerst J.V., Hori S., Gambhir S.S. Photoacoustic Tomography Detects Early Vessel Regression and Normalization During Ovarian Tumor Response to the Antiangiogenic Therapy Trebananib. J. Nucl. Med. 2015;56:1942–1947. doi: 10.2967/jnumed.115.160002. PubMed DOI PMC

Tummers W.S., Miller S.E., Teraphongphom N.T., Gomez A., Steinberg I., Huland D.M., Hong S., Kothapalli S.R., Hasan A., Ertsey R., et al. Intraoperative Pancreatic Cancer Detection using Tumor-Specific Multimodality Molecular Imaging. Ann. Surg. Oncol. 2018;25:1880–1888. doi: 10.1245/s10434-018-6453-2. PubMed DOI PMC

Napp J., Stammes M.A., Claussen J., Prevoo H., Sier C.F.M., Hoeben F.J.M., Robillard M.S., Vahrmeijer A.L., Devling T., Chan A.B., et al. Fluorescence- and multispectral optoacoustic imaging for an optimized detection of deeply located tumors in an orthotopic mouse model of pancreatic carcinoma. Int. J. Cancer. 2018;142:2118–2129. doi: 10.1002/ijc.31236. PubMed DOI

Nishimura M., Murayama Y., Harada K., Kamada Y., Morimura R., Ikoma H., Ichikawa D., Fujiwara H., Okamoto K., Otsuji E. Photodynamic Diagnosis of Hepatocellular Carcinoma Using 5-Aminolevulinic Acid. Anticancer Res. 2016;36:4569–4574. doi: 10.21873/anticanres.11005. PubMed DOI

Inoue Y., Tanaka R., Komeda K., Hirokawa F., Hayashi M., Uchiyama K. Fluorescence detection of malignant liver tumors using 5-aminolevulinic acid-mediated photodynamic diagnosis: Principles, technique, and clinical experience. World J. Surg. 2014;38:1786–1794. doi: 10.1007/s00268-014-2463-9. PubMed DOI

Fujiwara H., Takahara N., Tateishi K., Tanaka M., Kanai S., Kato H., Nakatsuka T., Yamamoto K., Kogure H., Arita J., et al. 5-Aminolevulinic acid-mediated photodynamic activity in patient-derived cholangiocarcinoma organoids. Surg. Oncol. 2020;35:484–490. doi: 10.1016/j.suronc.2020.10.011. PubMed DOI

Saito T., Ebihara Y., Li L., Shirosaki T., Iijima H., Tanaka K., Nakanishi Y., Asano T., Noji T., Kurashima Y., et al. A novel laparoscopic near-infrared fluorescence spectrum system for photodynamic diagnosis of peritoneal dissemination in pancreatic cancer. Photodiagn. Photodyn. Ther. 2021;33:102157. doi: 10.1016/j.pdpdt.2020.102157. PubMed DOI

Abrahamse H., Hamblin M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016;473:347–364. doi: 10.1042/BJ20150942. PubMed DOI PMC

Alsaab H.O., Alghamdi M.S., Alotaibi A.S., Alzhrani R., Alwuthaynani F., Althobaiti Y.S., Almalki A.H., Sau S., Iyer A.K. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers. 2020;12:2793. doi: 10.3390/cancers12102793. PubMed DOI PMC

Hanada Y., Pereira S.P., Pogue B., Maytin E.V., Hasan T., Linn B., Mangels-Dick T., Wang K.K. EUS-guided verteporfin photodynamic therapy for pancreatic cancer. Gastrointest. Endosc. 2021;94:179–186. doi: 10.1016/j.gie.2021.02.027. PubMed DOI PMC

Fang C., Zhang P., Qi X. Digital and intelligent liver surgery in the new era: Prospects and dilemmas. EBioMedicine. 2019;41:693–701. doi: 10.1016/j.ebiom.2019.02.017. PubMed DOI PMC

Felli E., Boleslawski E., Sommacale D., Scatton O., Brustia R., Schwarz L., Cherqui D., Zacharias T., Laurent A., Mabrut J.Y., et al. Paradigm shift: Should preoperative 3D reconstruction models become mandatory before hepatectomy for hepatocellular carcinoma (HCC)? Results of a multicenter prospective trial. HPB. 2023;25:293–300. doi: 10.1016/j.hpb.2022.11.007. PubMed DOI

Saito Y., Sugimoto M., Imura S., Morine Y., Ikemoto T., Iwahashi S., Yamada S., Shimada M. Intraoperative 3D Hologram Support with Mixed Reality Techniques in Liver Surgery. Ann. Surg. 2020;271:e4–e7. doi: 10.1097/SLA.0000000000003552. PubMed DOI

Liu J.P., Lerut J., Yang Z., Li Z.K., Zheng S.S. Three-dimensional modeling in complex liver surgery and liver transplantation. Hepatobiliary Pancreat. Dis. Int. 2022;21:318–324. doi: 10.1016/j.hbpd.2022.05.012. PubMed DOI

Maffione A.M., Rubello D., Caroli P., Colletti P.M., Matteucci F. Is It Time to Introduce PET/CT in Colon Cancer Guidelines? Clin. Nucl. Med. 2020;45:525–530. doi: 10.1097/RLU.0000000000003076. PubMed DOI

Sacks A., Peller P.J., Surasi D.S., Chatburn L., Mercier G., Subramaniam R.M. Value of PET/CT in the management of primary hepatobiliary tumors, part 2. AJR Am. J. Roentgenol. 2011;197:W260–W265. doi: 10.2214/AJR.11.6995. PubMed DOI

Tsang V.T.C., Li X., Wong T.T.W. A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations. Sensors. 2020;20:5595. doi: 10.3390/s20195595. PubMed DOI PMC

Zhao Z., Swartchick C.B., Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem. Soc. Rev. 2022;51:829–868. doi: 10.1039/D0CS00771D. PubMed DOI PMC

Kaplon H., Crescioli S., Chenoweth A., Visweswaraiah J., Reichert J.M. Antibodies to watch in 2023. MAbs. 2023;15:2153410. doi: 10.1080/19420862.2022.2153410. PubMed DOI PMC

Bever K.M., Sugar E.A., Bigelow E., Sharma R., Laheru D., Wolfgang C.L., Jaffee E.M., Anders R.A., De Jesus-Acosta A., Zheng L. The prognostic value of stroma in pancreatic cancer in patients receiving adjuvant therapy. HPB. 2015;17:292–298. doi: 10.1111/hpb.12334. PubMed DOI PMC

England C.G., Hernandez R., Eddine S.B., Cai W. Molecular Imaging of Pancreatic Cancer with Antibodies. Mol. Pharm. 2016;13:8–24. doi: 10.1021/acs.molpharmaceut.5b00626. PubMed DOI PMC

Catenacci D.V. Next-generation clinical trials: Novel strategies to address the challenge of tumor molecular heterogeneity. Mol. Oncol. 2015;9:967–996. doi: 10.1016/j.molonc.2014.09.011. PubMed DOI PMC

Mulder B.G.S., Koller M., Duiker E.W., Sarasqueta A.F., Burggraaf J., Meijer V.E., Vahrmeijer A.L., Hoogwater F.J.H., Bonsing B.A., van Dam G.M., et al. Intraoperative Molecular Fluorescence Imaging of Pancreatic Cancer by Targeting Vascular Endothelial Growth Factor: A Multicenter Feasibility Dose-Escalation Study. J. Nucl. Med. 2023;64:82–89. doi: 10.2967/jnumed.121.263773. PubMed DOI PMC

de Gooyer J.M., Elekonawo F.M., Bos D.L., van der Post R.S., Pèlegrin A., Framery B., Cailler F., Vahrmeijer A.L., de Wilt J.H., Rijpkema M. Multimodal CEA-targeted image-guided colorectal cancer surgery using 111In-labeled SGM-101. Clin. Cancer Res. 2020;26:5934–5942. doi: 10.1158/1078-0432.CCR-20-2255. PubMed DOI

Bannas P., Lenz A., Kunick V., Well L., Fumey W., Rissiek B., Haag F., Schmid J., Schutze K., Eichhoff A., et al. Molecular imaging of tumors with nanobodies and antibodies: Timing and dosage are crucial factors for improved in vivo detection. Contrast Media Mol. Imaging. 2015;10:367–378. doi: 10.1002/cmmi.1637. PubMed DOI

Baart V.M., van Manen L., Bhairosingh S.S., Vuijk F.A., Iamele L., de Jonge H., Scotti C., Resnati M., Cordfunke R.A., Kuppen P.J.K., et al. Side-by-Side Comparison of uPAR-Targeting Optical Imaging Antibodies and Antibody Fragments for Fluorescence-Guided Surgery of Solid Tumors. Mol. Imaging Biol. 2021;25:122–132. doi: 10.1007/s11307-021-01657-2. PubMed DOI PMC

Debie P., Devoogdt N., Hernot S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies. 2019;8:12. doi: 10.3390/antib8010012. PubMed DOI PMC

Zettlitz K.A., Tsai W.K., Knowles S.M., Kobayashi N., Donahue T.R., Reiter R.E., Wu A.M. Dual-Modality Immuno-PET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer Using an Anti-Prostate Stem Cell Antigen Cys-Diabody. J. Nucl. Med. 2018;59:1398–1405. doi: 10.2967/jnumed.117.207332. PubMed DOI PMC

Kimbrough C.W., Khanal A., Zeiderman M., Khanal B.R., Burton N.C., McMasters K.M., Vickers S.M., Grizzle W.E., McNally L.R. Targeting Acidity in Pancreatic Adenocarcinoma: Multispectral Optoacoustic Tomography Detects pH-Low Insertion Peptide Probes In Vivo. Clin. Cancer Res. 2015;21:4576–4585. doi: 10.1158/1078-0432.CCR-15-0314. PubMed DOI PMC

Jing R., Zhou X., Zhao J., Wei Y., Zuo B., You A., Rao Q., Gao X., Yang R., Chen L., et al. Fluorescent peptide highlights micronodules in murine hepatocellular carcinoma models and humans in vitro. Hepatology. 2018;68:1391–1411. doi: 10.1002/hep.29829. PubMed DOI

Shi J., Wang F., Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. Biophys. Rep. 2016;2:1–20. doi: 10.1007/s41048-016-0021-8. PubMed DOI PMC

Zhang G.Q., Zhong L.P., Yang N., Zhao Y.X. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J. Gastroenterol. 2019;25:3359–3369. doi: 10.3748/wjg.v25.i26.3359. PubMed DOI PMC

Li F.Q., Zhang S.X., An L.X., Gu Y.Q. In vivo molecular targeting effects of anti-Sp17- ICG-Der-02 on hepatocellular carcinoma evaluated by an optical imaging system. J. Exp. Clin. Cancer Res. 2011;30:25. doi: 10.1186/1756-9966-30-25. PubMed DOI PMC

Fu R., Carroll L., Yahioglu G., Aboagye E.O., Miller P.W. Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem. 2018;13:2466–2478. doi: 10.1002/cmdc.201800624. PubMed DOI PMC

Gurka M.K., Pender D., Chuong P., Fouts B.L., Sobelov A., McNally M.W., Mezera M., Woo S.Y., McNally L.R. Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J. Control. Release. 2016;231:60–67. doi: 10.1016/j.jconrel.2015.12.055. PubMed DOI PMC

Ingels A., Leguerney I., Cournede P.H., Irani J., Ferlicot S., Sebrie C., Benatsou B., Jourdain L., Pitre-Champagnat S., Patard J.J., et al. Ultrasound Molecular Imaging of Renal Cell Carcinoma: VEGFR targeted therapy monitored with VEGFR1 and FSHR targeted microbubbles. Sci. Rep. 2020;10:7308. doi: 10.1038/s41598-020-64433-2. PubMed DOI PMC

Nishino H., Turner M.A., Amirfakhri S., Lwin T.M., Hosseini M., Singer B.B., Hoffman R.M., Bouvet M. Proof of Principle of Combining Fluorescence-Guided Surgery with Photoimmunotherapy to Improve the Outcome of Pancreatic Cancer Therapy in an Orthotopic Mouse Model. Ann. Surg. Oncol. 2023;30:618–625. doi: 10.1245/s10434-022-12466-4. PubMed DOI PMC

Park J.Y., Hiroshima Y., Lee J.Y., Maawy A.A., Hoffman R.M., Bouvet M. MUC1 selectively targets human pancreatic cancer in orthotopic nude mouse models. PLoS ONE. 2015;10:e0122100. doi: 10.1371/journal.pone.0122100. PubMed DOI PMC

Handgraaf H.J.M., Boonstra M.C., Prevoo H., Kuil J., Bordo M.W., Boogerd L.S.F., Sibinga Mulder B.G., Sier C.F.M., Vinkenburg-van Slooten M.L., Valentijn A., et al. Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget. 2017;8:21054–21066. doi: 10.18632/oncotarget.15486. PubMed DOI PMC

Boonstra M.C., Tolner B., Schaafsma B.E., Boogerd L.S., Prevoo H.A., Bhavsar G., Kuppen P.J., Sier C.F., Bonsing B.A., Frangioni J.V., et al. Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors. Int. J. Cancer. 2015;137:1910–1920. doi: 10.1002/ijc.29571. PubMed DOI PMC

Deng H., Shang W.T., Lu G.H., Guo P.Y., Ai T., Fang C.H., Tian J. Targeted and Multifunctional Technology for Identification between Hepatocellular Carcinoma and Liver Cirrhosis. ACS Appl. Mater. Interfaces. 2019;11:14526–14537. doi: 10.1021/acsami.8b20600. PubMed DOI

Yan H., Gao X., Zhang Y., Chang W., Li J., Li X., Du Q., Li C. Imaging Tiny Hepatic Tumor Xenografts via Endoglin-Targeted Paramagnetic/Optical Nanoprobe. ACS Appl. Mater. Interfaces. 2018;10:17047–17057. doi: 10.1021/acsami.8b02648. PubMed DOI

Zeng Z., Chen J., Luo S., Dong J., Hu H., Yang Z., Feng X., Liu Y., Liu B., Pan G., et al. Targeting and imaging colorectal cancer by activatable cell-penetrating peptides. Am. J. Transl. Res. 2020;12:1754–1766. PubMed PMC

Jin Y., Wang K., Tian J. Preoperative Examination and Intraoperative Identification of Hepatocellular Carcinoma Using a Targeted Bimodal Imaging Probe. Bioconjug. Chem. 2018;29:1475–1484. doi: 10.1021/acs.bioconjchem.8b00161. PubMed DOI

Hernandez R., Sun H., England C.G., Valdovinos H.F., Ehlerding E.B., Barnhart T.E., Yang Y., Cai W. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody. Theranostics. 2016;6:1918–1933. doi: 10.7150/thno.15568. PubMed DOI PMC

Hollandsworth H.M., Nishino H., Turner M., Amirfakhri S., Filemoni F., Hoffman R.M., Yazaki P.J., Bouvet M. Humanized Fluorescent Tumor-associated Glycoprotein-72 Antibody Selectively Labels Colon-cancer Liver Metastases in Orthotopic Mouse Models. In Vivo. 2020;34:2303–2307. doi: 10.21873/invivo.12042. PubMed DOI PMC

Zeng C., Shang W., Wang K., Chi C., Jia X., Fang C., Yang D., Ye J., Fang C., Tian J. Intraoperative Identification of Liver Cancer Microfoci Using a Targeted Near-Infrared Fluorescent Probe for Imaging-Guided Surgery. Sci. Rep. 2016;6:21959. doi: 10.1038/srep21959. PubMed DOI PMC

Tang C., Du Y., Liang Q., Cheng Z., Tian J. Development of a Novel Histone Deacetylase-Targeted Near-Infrared Probe for Hepatocellular Carcinoma Imaging and Fluorescence Image-Guided Surgery. Mol. Imaging Biol. 2020;22:476–485. doi: 10.1007/s11307-019-01389-4. PubMed DOI

Hiroshima Y., Lwin T.M., Murakami T., Mawy A.A., Kuniya T., Chishima T., Endo I., Clary B.M., Hoffman R.M., Bouvet M. Effective fluorescence-guided surgery of liver metastasis using a fluorescent anti-CEA antibody. J. Surg. Oncol. 2016;114:951–958. doi: 10.1002/jso.24462. PubMed DOI PMC

Zhao M., Dong L., Liu Z., Yang S., Wu W., Lin J. In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe. Quant. Imaging Med. Surg. 2018;8:151–160. doi: 10.21037/qims.2018.01.09. PubMed DOI PMC

Qi S., Liu G., Chen J., Cao P., Lei X., Ding C., Chen G., Zhang Y., Wang L. Targeted Multifunctional Nanoplatform for Imaging-Guided Precision Diagnosis and Photothermal/Photodynamic Therapy of Orthotopic Hepatocellular Carcinoma. Int. J. Nanomed. 2022;17:3777–3792. doi: 10.2147/IJN.S377080. PubMed DOI PMC

Chen Y., Lu J., Yang J., Hao K., Li M. Investigation of Alpha-Fetoprotein Antibody Modified Fluorescent Magnetic Probe on HepG(2) Cell and Cancer Model Mouse. J. Nanosci. Nanotechnol. 2020;20:5147–5150. doi: 10.1166/jnn.2020.18541. PubMed DOI

Park J.Y., Murakami T., Lee J.Y., Zhang Y., Hoffman R.M., Bouvet M. Fluorescent-Antibody Targeting of Insulin-Like Growth Factor-1 Receptor Visualizes Metastatic Human Colon Cancer in Orthotopic Mouse Models. PLoS ONE. 2016;11:e0146504. doi: 10.1371/journal.pone.0146504. PubMed DOI PMC

Wu L.Y., Ishigaki Y., Hu Y.X., Sugimoto K., Zeng W.H., Harimoto T., Sun Y.D., He J., Suzuki T., Jiang X.Q., et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 2020;11:446. doi: 10.1038/s41467-020-14307-y. PubMed DOI PMC

Brachi G., Bussolino F., Ciardelli G., Mattu C. Nanomedicine for Imaging and Therapy of Pancreatic Adenocarcinoma. Front. Bioeng. Biotechnol. 2019;7:307. doi: 10.3389/fbioe.2019.00307. PubMed DOI PMC

Valderrama-Trevino A.I., Barrera-Mera B., Ceballos-Villalva J.C., Montalvo-Jave E.E. Hepatic Metastasis from Colorectal Cancer. Euroasian J. Hepatogastroenterol. 2017;7:166–175. doi: 10.5005/jp-journals-10018-1241. PubMed DOI PMC

Chan A., Zhang W.Y., Chok K., Dai J., Ji R., Kwan C., Man N., Poon R., Lo C.M. ALPPS Versus Portal Vein Embolization for Hepatitis-related Hepatocellular Carcinoma: A Changing Paradigm in Modulation of Future Liver Remnant Before Major Hepatectomy. Ann. Surg. 2021;273:957–965. doi: 10.1097/SLA.0000000000003433. PubMed DOI

Joliat G.R., Kobayashi K., Hasegawa K., Thomson J.E., Padbury R., Scott M., Brustia R., Scatton O., Tran Cao H.S., Vauthey J.N., et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations 2022. World J. Surg. 2023;47:11–34. doi: 10.1007/s00268-022-06732-5. PubMed DOI PMC

De Simoni O., Scarpa M., Tonello M., Pilati P., Tolin F., Spolverato Y., Gruppo M. Oligometastatic Pancreatic Cancer to the Liver in the Era of Neoadjuvant Chemotherapy: Which Role for Conversion Surgery? A Systematic Review and Meta-Analysis. Cancers. 2020;12:3402. doi: 10.3390/cancers12113402. PubMed DOI PMC

Martin J., Petrillo A., Smyth E.C., Shaida N., Khwaja S., Cheow H.K., Duckworth A., Heister P., Praseedom R., Jah A., et al. Colorectal liver metastases: Current management and future perspectives. World J. Clin. Oncol. 2020;11:761–808. doi: 10.5306/wjco.v11.i10.761. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...