Immunophenotyping of peripheral blood in NSCLC patients discriminates responders to immune checkpoint inhibitors
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu pozorovací studie, časopisecké články
Grantová podpora
NV19-03-00179
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38383923
PubMed Central
PMC10881622
DOI
10.1007/s00432-024-05628-2
PII: 10.1007/s00432-024-05628-2
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers, Checkpoint inhibitors, Immunotherapy, NSCLC,
- MeSH
- antigeny CD274 MeSH
- biologické markery MeSH
- hemoglobiny terapeutické užití MeSH
- imunofenotypizace MeSH
- inhibitory kontrolních bodů terapeutické užití MeSH
- lidé MeSH
- nádory plic * MeSH
- nemalobuněčný karcinom plic * MeSH
- nivolumab terapeutické užití MeSH
- prospektivní studie MeSH
- protinádorové látky imunologicky aktivní * terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- antigeny CD274 MeSH
- biologické markery MeSH
- hemoglobiny MeSH
- inhibitory kontrolních bodů MeSH
- nivolumab MeSH
- protinádorové látky imunologicky aktivní * MeSH
PURPOSE: Immune checkpoint inhibitors (ICIs) dramatically changed the prognosis of patients with NSCLC. Unfortunately, a reliable predictive biomarker is still missing. Commonly used biomarkers, such as PD-L1, MSI, or TMB, are not quite accurate in predicting ICI efficacy. METHODS: In this prospective observational cohort study, we investigated the predictive role of erythrocytes, thrombocytes, innate and adaptive immune cells, complement proteins (C3, C4), and cytokines from peripheral blood of 224 patients with stage III/IV NSCLC treated with ICI alone (pembrolizumab, nivolumab, and atezolizumab) or in combination (nivolumab + ipilimumab) with chemotherapy. These values were analyzed for associations with the response to the treatment and survival endpoints. RESULTS: Higher baseline Tregs, MPV, hemoglobin, and lower monocyte levels were associated with favorable PFS and OS. Moreover, increased baseline basophils and lower levels of C3 predicted significantly improved PFS. The levels of the baseline immature granulocytes, C3, and monocytes were significantly associated with the occurrence of partial regression at the first restaging. Multiple studied parameters (n = 9) were related to PFS benefit at the time of first restaging as compared to baseline values. In addition, PFS nonbenefit group showed a decrease in lymphocyte count after three months of therapy. The OS benefit was associated with higher levels of lymphocytes, erythrocytes, hemoglobin, MCV, and MPV, and a lower value of NLR after three months of treatment. CONCLUSION: Our work suggests that parameters from peripheral venous blood may be potential biomarkers in NSCLC patients on ICI. The baseline values of Tregs, C3, monocytes, and MPV are especially recommended for further investigation.
Zobrazit více v PubMed
An HJ, Chon HJ, Kim C. Peripheral blood-based biomarkers for immune checkpoint inhibitors. Int J Mol Sci. 2021;22(17):9414. doi: 10.3390/IJMS22179414. PubMed DOI PMC
Ayers KL, Ma M, Debussche G, et al. A composite biomarker of neutrophil-lymphocyte ratio and hemoglobin level correlates with clinical response to PD-1 and PD-L1 inhibitors in advanced non-small cell lung cancers. BMC Cancer. 2021;21(1):441. doi: 10.1186/s12885-021-08194-9. PubMed DOI PMC
Bagley SJ, Kothari S, Aggarwal C, et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer. 2017;106:1–7. doi: 10.1016/J.LUNGCAN.2017.01.013. PubMed DOI
Caliman E, Fancelli S, Ottanelli C, et al. Absolute eosinophil count predicts clinical outcomes and toxicity in non-small cell lung cancer patients treated with immunotherapy. Cancer Treat Res Commun. 2022;32:100603. doi: 10.1016/J.CTARC.2022.100603. PubMed DOI
Chauhan J, Stavraka C, Grandits M, et al. Clinical and translational significance of basophils in patients with cancer. Cells. 2022;11(3):438. doi: 10.3390/CELLS11030438/S1. PubMed DOI PMC
Chocarro L, Blanco E, Zuazo M, et al. Understanding LAG-3 signaling. Int J Mol Sci. 2021;22(10):5282. doi: 10.3390/IJMS22105282. PubMed DOI PMC
Derman BA, Macklis JN, Azeem MS, et al. Relationships between longitudinal neutrophil to lymphocyte ratios, body weight changes, and overall survival in patients with non-small cell lung cancer. BMC Cancer. 2017;17(1):141. doi: 10.1186/S12885-017-3122-Y. PubMed DOI PMC
Ettinger DS, Wood DE, Aisner DL et al (2023) NCCN guidelines Version 5.2023 non-small cell lung cancer continue NCCN guidelines panel disclosures. Published online 2023. Accessed October 2, 2023
Giommoni E, Giorgione R, Paderi A, et al. Eosinophil count as predictive biomarker of immune-related adverse events (irAEs) in immune checkpoint inhibitors (ICIs) therapies in oncological patients. Immuno. 2021;1(3):253–263. doi: 10.3390/immuno1030017. DOI
Grisaru-Tal S, Rothenberg ME, Munitz A. Eosinophil–lymphocyte interactions in the tumor microenvironment and cancer immunotherapy. Nat Immunol. 2022;23(9):1309–1316. doi: 10.1038/s41590-022-01291-2. PubMed DOI PMC
Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. 2022;19(4):254–267. doi: 10.1038/S41571-022-00600-W. PubMed DOI PMC
Kagamu H, Kitano S, Yamaguchi O, et al. CD4+ T-cell immunity in the peripheral blood correlates with response to Anti-PD-1 therapy. Cancer Immunol Res. 2020;8(3):334–344. doi: 10.1158/2326-6066. PubMed DOI
Kargl J, Busch SE, Yang GHY, et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat Commun. 2017;8(1):1–11. doi: 10.1038/ncomms14381. PubMed DOI PMC
Kharel S, Shrestha S, Shakya P, et al. Prognostic significance of mean platelet volume in patients with lung cancer: a meta-analysis. J Int Med Res. 2022;50(3):1–14. doi: 10.1177/03000605221084874. PubMed DOI PMC
Khunger M, Patil PD, Khunger A, et al. Post-treatment changes in hematological parameters predict response to nivolumab monotherapy in non-small cell lung cancer patients. PLoS One. 2018;13(10):e0197743. doi: 10.1371/journal.pone.0197743. PubMed DOI PMC
Kim SS, Sumner WA, Miyauchi S, et al. Role of B cells in responses to checkpoint blockade immunotherapy and overall survival of cancer patients. Clin Cancer Res. 2021;27(22):6075–6082. doi: 10.1158/1078-0432.CCR-21-0697. PubMed DOI PMC
Koh J, Hur JY, Lee KY, et al. Regulatory (FoxP3+) T cells and TGF-β predict the response to anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep. 2020;10(1):18994. doi: 10.1038/s41598-020-76130-1. PubMed DOI PMC
Kumagai S, Togashi Y, Kamada T, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 2020;21(11):1346–1358. doi: 10.1038/S41590-020-0769-3. PubMed DOI
Lee YJ, Park YS, Lee HW, et al. Peripheral lymphocyte count as a surrogate marker of immune checkpoint inhibitor therapy outcomes in patients with non-small-cell lung cancer. Sci Rep. 2022;12(1):626. doi: 10.1038/s41598-021-04630-9. PubMed DOI PMC
Li Y, Zhang Z, Hu Y, et al. Pretreatment neutrophil-to-lymphocyte ratio (NLR) may predict the outcomes of advanced non-small-cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs) Front Oncol. 2020;10:654. doi: 10.3389/FONC.2020.00654/BIBTEX. PubMed DOI PMC
Lu S, Stein JE, Rimm DL, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019;5(8):1195–1204. doi: 10.1001/jamaoncol.2019.1549. PubMed DOI PMC
Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30(8):1232–1243. doi: 10.1093/annonc/mdz116. PubMed DOI
Mareckova H, Ravdan A, Fucikova T, Janatkova I. Detection of the production of intracellular cytokines by T lymphocytes using flow cytometry–methodologic problems. Epidemiol Mikrobiol Imunol. 2002;51(3):111–118. PubMed
Marone G, Schroeder JT, Mattei F, et al. Is there a role for basophils in cancer? Front Immunol. 2020;11:2103. doi: 10.3389/FIMMU.2020.02103. PubMed DOI PMC
Mathew M, Safyan RA, Shu CA. PD-L1 as a biomarker in NSCLC: challenges and future directions. Ann Transl Med. 2017;5(18):375. doi: 10.21037/ATM.2017.08.04. PubMed DOI PMC
McGrail DJ, Pilié PG, Rashid NU, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021;32(5):661–672. doi: 10.1016/j.annonc.2021.02.006. PubMed DOI PMC
Oberg HH, Wesch D, Kalyan S, Kabelitz D. Regulatory interactions between neutrophils, tumor cells and T cells. Front Immunol. 2019;10:1690. doi: 10.3389/FIMMU.2019.01690. PubMed DOI PMC
Omar M, Tanriverdi O, Cokmert S, et al. Role of increased mean platelet volume (MPV) and decreased MPV/platelet count ratio as poor prognostic factors in lung cancer. Clin Respir J. 2018;12(3):922–929. doi: 10.1111/CRJ.12605. PubMed DOI
Parikh K, Kumar A, Ahmed J, et al. Peripheral monocytes and neutrophils predict response to immune checkpoint inhibitors in patients with metastatic non-small cell lung cancer. Cancer Immunol Immunother. 2018;67(9):1365–1370. doi: 10.1007/s00262-018-2192-2. PubMed DOI PMC
Patel AJ, Richter A, Drayson MT, Middleton GW. The role of B lymphocytes in the immuno-biology of non-small-cell lung cancer. Cancer Immunol Immunother. 2020;69(3):325–342. doi: 10.1007/S00262-019-02461-2. PubMed DOI PMC
Pawelczyk K, Piotrowska A, Ciesielska U, et al. Role of PD-L1 expression in non-small cell lung cancer and their prognostic significance according to clinicopathological factors and diagnostic markers. Int J Mol Sci. 2019;20(4):524. doi: 10.3390/IJMS20040824. PubMed DOI PMC
Peranzoni E, Ingangi V, Masetto E, et al. Myeloid cells as clinical biomarkers for immune checkpoint blockade. Front Immunol. 2020;11:1590. doi: 10.3389/fimmu.2020.01590. PubMed DOI PMC
Pio R, Ajona D, Ortiz-Espinosa S, et al. Complementing the cancer-immunity cycle. Front Immunol. 2019;10:774. doi: 10.3389/FIMMU.2019.00774. PubMed DOI PMC
Principe DR, Chiec L, Mohindra NA, Munshi HG. Regulatory T-cells as an emerging barrier to immune checkpoint inhibition in lung cancer. Front Oncol. 2021;11:684098. doi: 10.3389/FONC.2021.684098. PubMed DOI PMC
Roumenina LT, Daugan M, Petitprez F, et al. Context-dependent roles of complement in cancer. Nat Rev Cancer. 2019;19(12):698–715. doi: 10.1038/s41568-019-0210-0. PubMed DOI
Sankar K, Ye JC, Li Z, et al. The role of biomarkers in personalized immunotherapy. Biomark Res. 2022;10(1):1–13. doi: 10.1186/S40364-022-00378-0. PubMed DOI PMC
Scheel AH, Ansén S, Schultheis AM, et al. PD-L1 expression in non-small cell lung cancer: correlations with genetic alterations. Oncoimmunology. 2016;5(5):e1131379. doi: 10.1080/2162402X.2015.1131379. PubMed DOI PMC
Seymour L, Bogaerts J, Perrone A, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143. doi: 10.1016/S1470-2045(17)30074-8. PubMed DOI PMC
Sibille A, Corhay JL, Louis R, et al. Eosinophils and lung cancer: from bench to bedside. Int J Mol Sci. 2022;23(9):5066. doi: 10.3390/IJMS23095066. PubMed DOI PMC
Tazzyman S, Lewis CE, Murdoch C. Neutrophils: key mediators of tumour angiogenesis. Int J Exp Pathol. 2009;90(3):222. doi: 10.1111/J.1365-2613.2009.00641.X. PubMed DOI PMC
Thurman JM, Laskowski J, Nemeno RA. Complement and cancer—a dysfunctional relationship? Antibodies. 2020;9(4):1–16. doi: 10.3390/ANTIB9040061. PubMed DOI PMC
Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–1086. doi: 10.1158/2159-8290.CD-18-0367. PubMed DOI
Wu C, Qiu Y, Zhang R, et al. Association of peripheral basophils with tumor M2 macrophage infiltration and outcomes of the anti-PD-1 inhibitor plus chemotherapy combination in advanced gastric cancer. J Transl Med. 2022;20(1):1–15. doi: 10.1186/S12967-022-03598-Y. PubMed DOI PMC
Yan Y, Wang X, Liu C, Jia J. Association of lymphocyte subsets with efficacy and prognosis of immune checkpoint inhibitor therapy in advanced non-small cell lung carcinoma: a retrospective study. BMC Pulm Med. 2022;22(1):1–14. doi: 10.1186/S12890-022-01951-X. PubMed DOI PMC
Yang Y, Li C, Liu T, et al. Myeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulation. Front Immunol. 2020;11:1371. doi: 10.3389/FIMMU.2020.01371. PubMed DOI PMC
Zha H, Wang X, Zhu Y, et al. Intracellular activation of complement C3 leads to PD-L1 antibody treatment resistance by modulating tumor-associated macrophages. Cancer Immunol Res. 2019;7(2):193–207. doi: 10.1158/2326-6066.CIR-18-0272. PubMed DOI
Zhang Z, Zhang F, Yuan F, et al. Pretreatment hemoglobin level as a predictor to evaluate the efficacy of immune checkpoint inhibitors in patients with advanced non-small cell lung cancer. Ther Adv Med Oncol. 2020;5(12):1758835920970049. doi: 10.1177/1758835920970049. PubMed DOI PMC