Development of an effective predictive screening tool for prostate cancer using the ClarityDX machine learning platform
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
G2017000328
Alberta Innovates
ACF 26001
Alberta Cancer Foundation
PCC MTA TAG2014-03
Prostate Cancer Canada (Cancer de la Prostate Canada)
PubMed
38902526
PubMed Central
PMC11190196
DOI
10.1038/s41746-024-01167-9
PII: 10.1038/s41746-024-01167-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The current prostate cancer (PCa) screen test, prostate-specific antigen (PSA), has a high sensitivity for PCa but low specificity for high-risk, clinically significant PCa (csPCa), resulting in overdiagnosis and overtreatment of non-csPCa. Early identification of csPCa while avoiding unnecessary biopsies in men with non-csPCa is challenging. We built an optimized machine learning platform (ClarityDX) and showed its utility in generating models predicting csPCa. Integrating the ClarityDX platform with blood-based biomarkers for clinically significant PCa and clinical biomarker data from a 3448-patient cohort, we developed a test to stratify patients' risk of csPCa; called ClarityDX Prostate. When predicting high risk cancer in the validation cohort, ClarityDX Prostate showed 95% sensitivity, 35% specificity, 54% positive predictive value, and 91% negative predictive value, at a ≥ 25% threshold. Using ClarityDX Prostate at this threshold could avoid up to 35% of unnecessary prostate biopsies. ClarityDX Prostate showed higher accuracy for predicting the risk of csPCa than PSA alone and the tested model-based risk calculators. Using this test as a reflex test in men with elevated PSA levels may help patients and their healthcare providers decide if a prostate biopsy is necessary.
Department of Oncology University of Alberta Edmonton T6G 2E1 AB Canada
Department of Surgery McGill University Montreal H3G 2M1 QC Canada
Department of Surgical Oncology University Health Network Toronto ON Canada
Division of Urology Department of Surgery Mount Sinai Hospital Toronto M5G 1X5 ON Canada
Division of Urology Department of Surgery University of Toronto Toronto M5T 1P5 ON Canada
Nanostics Inc 4550 10230 Jasper Avenue Edmonton T5J 4P6 AB Canada
UCLA Health Westwood Urology 200 Medical Plaza Suite 140 Los Angeles CA 90095 USA
Zobrazit více v PubMed
Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer J. Clin. 2021;71:209–249. PubMed
Desai, C., Ehsanullah, S. A., Bhojwani, A. & Dhanasekaran, A. 648 External Validation of The European Randomized Study of Screening for Prostate Cancer Risk Calculator 3 (ERSPC-RC3) In the Detection of Prostate Cancer and Avoiding Unnecessary Prostate Biopsies. British J. Surg.10810.1093/bjs/znab134.566 (2021).
Verbeek JFM, Roobol MJ. What is an acceptable false negative rate in the detection of prostate cancer? Transl. Androl. Urol. 2018;7:54–60. doi: 10.21037/tau.2017.12.12. PubMed DOI PMC
Alford AV, et al. The use of biomarkers in prostate cancer screening and treatment. Rev. Urol. 2017;19:221–234. PubMed PMC
Chang EK, Gadzinski AJ, Nyame YA. Blood and urine biomarkers in prostate cancer: Are we ready for reflex testing in men with an elevated prostate-specific antigen? Asian J. Urol. 2021;8:343–353. doi: 10.1016/j.ajur.2021.06.003. PubMed DOI PMC
Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol. 2020;77:38–52. doi: 10.1016/j.eururo.2019.08.005. PubMed DOI
Van Poppel H, et al. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nat. Rev. Urol. 2022;19:562–572. doi: 10.1038/s41585-022-00638-6. PubMed DOI
Getaneh AM, Heijnsdijk EA, Roobol MJ, de Koning HJ. Assessment of harms, benefits, and cost‐effectiveness of prostate cancer screening: A micro‐simulation study of 230 scenarios. Cancer Med. 2020;9:7742–7750. doi: 10.1002/cam4.3395. PubMed DOI PMC
Van Poppel H, et al. Prostate-specific antigen testing as part of a risk-adapted early detection strategy for prostate cancer: european association of urology position and recommendations for 2021. Eur. Urol. 2021;80:703–711. doi: 10.1016/j.eururo.2021.07.024. PubMed DOI
Schröder FH, et al. The European randomized study of screening for prostate cancer – prostate cancer mortality at 13 years of follow-up. Lancet. 2014;384:2027–2035. doi: 10.1016/S0140-6736(14)60525-0. PubMed DOI PMC
Mottet N, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2021;79:243–262. doi: 10.1016/j.eururo.2020.09.042. PubMed DOI
Heijnsdijk EA, Denham D, de Koning HJ. The cost-effectiveness of prostate cancer detection with the use of prostate health index. Value Health. 2016;19:153–157. doi: 10.1016/j.jval.2015.12.002. PubMed DOI
Cooperberg MR, Carroll PR. Trends in management for patients with localized prostate cancer, 1990-2013. Jama. 2015;314:80–82. doi: 10.1001/jama.2015.6036. PubMed DOI
Fenton JJ, et al. Prostate-specific antigen-based screening for prostate cancer: evidence report and systematic review for the US preventive services task force. Jama. 2018;319:1914–1931. doi: 10.1001/jama.2018.3712. PubMed DOI
Drost F-JH, et al. Can active surveillance really reduce the harms of overdiagnosing prostate cancer? A reflection of real life clinical practice in the PRIAS study. Transl. Androl. Urol. 2018;7:98–105. doi: 10.21037/tau.2017.12.28. PubMed DOI PMC
Loeb S, et al. Five-year nationwide follow-up study of active surveillance for prostate cancer. Eur. Urol. 2015;67:233–238. doi: 10.1016/j.eururo.2014.06.010. PubMed DOI PMC
Stabile A, et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat. Rev. Urol. 2019;17:41–61. doi: 10.1038/s41585-019-0212-4. PubMed DOI
Alberts AR, et al. Prediction of high-grade prostate cancer following multiparametric magnetic resonance imaging: improving the rotterdam european randomized study of screening for prostate cancer risk calculators. Eur. Urol. 2019;75:310–318. doi: 10.1016/j.eururo.2018.07.031. PubMed DOI
Kohestani K, et al. The GÖTEBORG prostate cancer screening 2 trial: a prospective, randomised, population-based prostate cancer screening trial with prostate-specific antigen testing followed by magnetic resonance imaging of the prostate. Scand. J. Urol. 2021;55:116–124. doi: 10.1080/21681805.2021.1881612. PubMed DOI PMC
Drost, F. J. H. et al. Prostate MRI, with or without MRI‐targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst. Rev.10.1002/14651858.CD012663.pub2 (2019). PubMed PMC
Sonn GA, et al. Prostate magnetic resonance imaging interpretation varies substantially across radiologists. Eur. Urol. focus. 2019;5:592–599. doi: 10.1016/j.euf.2017.11.010. PubMed DOI
Westphalen AC, et al. Variability of the Positive Predictive Value of PI-RADS for Prostate MRI across 26 Centers: Experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel. Radiology. 2020;296:76–84. doi: 10.1148/radiol.2020190646. PubMed DOI PMC
Kinnaird A, et al. Risk of prostate cancer after a negative magnetic resonance imaging guided biopsy. J. Urol. 2020;204:1180–1186. doi: 10.1097/JU.0000000000001232. PubMed DOI
Kim SJ, Vickers AJ, Hu JC. Challenges in adopting level 1 evidence for multiparametric magnetic resonance imaging as a biomarker for prostate cancer screening. JAMA Oncol. 2018;4:1663–1664. doi: 10.1001/jamaoncol.2018.4160. PubMed DOI PMC
Cerantola Y, et al. Cost-effectiveness of multiparametric magnetic resonance imaging and targeted biopsy in diagnosing prostate cancer. Urologic Oncol.: Semin. Original Investig. 2016;34:119.e111–119.e119. PubMed
Venderink W, Govers TM, de Rooij M, Fütterer JJ, Sedelaar JPM. Cost-effectiveness comparison of imaging-guided prostate biopsy techniques: systematic transrectal ultrasound, direct in-bore MRI, and image fusion. Am. J. Roentgenol. 2017;208:1058–1063. doi: 10.2214/AJR.16.17322. PubMed DOI
de Rooij M, et al. Cost-effectiveness of Magnetic Resonance (MR) Imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound–guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur. Urol. 2014;66:430–436. doi: 10.1016/j.eururo.2013.12.012. PubMed DOI
Amini AE, Salari K. Incorporating genetic risk into prostate cancer care: implications for early detection and precision oncology. JCO Precis. Oncol. 2024;8:e2300560. doi: 10.1200/PO.23.00560. PubMed DOI
Bosaily AE-S, et al. PROMIS—prostate MR imaging study: a paired validating cohort study evaluating the role of multi-parametric MRI in men with clinical suspicion of prostate cancer. Contemp. Clin. trials. 2015;42:26–40. doi: 10.1016/j.cct.2015.02.008. PubMed DOI PMC
Lepor A, Catalona WJ, Loeb S. The prostate health index: its utility in prostate cancer detection. Urol. Clin. North Am. 2016;43:1–6. doi: 10.1016/j.ucl.2015.08.001. PubMed DOI PMC
Vickers, A. J., Vertosick, E. A. & Sjoberg, D. D. Value of a statistical model based on four kallikrein markers in blood, commercially available as 4Kscore, in all reasonable prostate biopsy subgroups. Eur. Urol. 7410.1016/j.eururo.2018.05.032 (2018). PubMed PMC
Ankerst DP, et al. A contemporary prostate biopsy risk calculator based on multiple heterogeneous cohorts. Eur. Urol. 2018;74:197–203. doi: 10.1016/j.eururo.2018.05.003. PubMed DOI PMC
Kinnaird A, et al. A prostate cancer risk calculator: Use of clinical and magnetic resonance imaging data to predict biopsy outcome in North American men. Can. Urological Assoc. J. = J. de. l’Assoc. des. urologues du Can. 2022;16:E161–e166. PubMed PMC
Grönberg H, et al. Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. lancet Oncol. 2015;16:1667–1676. doi: 10.1016/S1470-2045(15)00361-7. PubMed DOI
Loeb S, et al. Systematic review of complications of prostate biopsy. Eur. Urol. 2013;64:876–892. doi: 10.1016/j.eururo.2013.05.049. PubMed DOI
Cheng, K. C. et al. Emergency attendances and hospitalisations for complications after transrectal ultrasound-guided prostate biopsies: a five-year retrospective multicentre study. Hong Kong Medical J.10.12809/hkmj197825 (2019). PubMed
Rudzinski JK, Kawakami J. Incidence of infectious complications following transrectal ultrasound-guided prostate biopsy in Calgary, Alberta, Canada: A retrospective population-based analysis. Can. Urological Assoc. J. = J. de. l’Assoc. des. urologues du Can. 2014;8:E301–E305. doi: 10.5489/cuaj.1751. PubMed DOI PMC
Liss, M. et al. The Prevention and Treatment of the More Common Complications Related to Prostate Biopsy Update, https://www.auanet.org/guidelines/guidelines/prostate-needle-biopsy-complications (2016). PubMed
Kaufmann B, et al. Prostate cancer detection rate in men undergoing transperineal template-guided saturation and targeted prostate biopsy. Prostate. 2022;82:388–396. doi: 10.1002/pros.24286. PubMed DOI PMC
Kasivisvanathan V, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 2018;378:1767–1777. doi: 10.1056/NEJMoa1801993. PubMed DOI PMC
Vasquez C, et al. Cohort profile: the Alberta Prostate Cancer Research Initiative (APCaRI) Registry and Biorepository facilitates technology translation to the clinic through the use of linked, longitudinal clinical and patient-reported data and biospecimens from men in Alberta, Canada. BMJ Open. 2020;10:e037222. doi: 10.1136/bmjopen-2020-037222. PubMed DOI PMC
NICE. Stockholm3 for prostate cancer screening. Report No. MIB303, (2022).
FDA. Multi-analyte test system with algorithmic analysis for detection of prostate cancer, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P190022 (2021).
Vigneswaran HT, et al. Stockholm3 validation in a multi-ethnic cohort for prostate cancer (SEPTA) detection: A multicentered, prospective trial. J. Clin. Oncol. 2024;42:262–262. doi: 10.1200/JCO.2024.42.4_suppl.262. DOI
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Ankerst DP, et al. Prostate cancer prevention trial risk calculator 2.0 for the prediction of low- versus high-grade prostate cancer. Urology. 2014;83:1362–1368. doi: 10.1016/j.urology.2014.02.035. PubMed DOI PMC
Roobol MJ, et al. Prediction of Prostate Cancer Risk: The Role of Prostate Volume and Digital Rectal Examination in the ERSPC Risk Calculators. Eur. Urol. 2012;61:577–583. doi: 10.1016/j.eururo.2011.11.012. PubMed DOI
Wagaskar VG, et al. A SelectMDx/magnetic resonance imaging‐based nomogram to diagnose prostate cancer. Cancer Rep. 2023;6:e1668. doi: 10.1002/cnr2.1668. PubMed DOI PMC
Wagaskar VG, et al. A 4K score/MRI‐based nomogram for predicting prostate cancer, clinically significant prostate cancer, and unfavorable prostate cancer. Cancer Rep. 2021;4:e1357. doi: 10.1002/cnr2.1357. PubMed DOI PMC
World Medical, A. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001;79:373–374. PubMed PMC
SWOP. The prostate cancer risk calculators, https://www.prostatecancer-riskcalculator.com/seven-prostate-cancer-risk-calculators (2023).
UT-Health. Prostate Cancer Prevention Trial Risk Calculator Version2.0, https://riskcalc.org/PCPTRC/ (2018).
DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837-845 (1988). PubMed