First real-time imaging of bronchoscopic lung volume reduction by electrical impedance tomography
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2012-00100-2
Fundação de Amparo à Pesquisa do Estado de São Paulo
GA ČR 22-34020S
Grantová Agentura České Republiky
GA ČR 22-34020S
Grantová Agentura České Republiky
PubMed
38965590
PubMed Central
PMC11225379
DOI
10.1186/s12931-024-02877-0
PII: 10.1186/s12931-024-02877-0
Knihovny.cz E-zdroje
- Klíčová slova
- Absorption atelectasis, Electrical impedance tomography, Emphysema, Endobronchial valves, Lung volume reduction,
- MeSH
- atelektáza diagnostické zobrazování patofyziologie MeSH
- bronchoskopie * metody MeSH
- časové faktory MeSH
- elektrická impedance * MeSH
- měření objemu plic metody MeSH
- plíce diagnostické zobrazování patofyziologie chirurgie fyziologie MeSH
- pneumektomie metody MeSH
- prasata MeSH
- tomografie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.
Zobrazit více v PubMed
Shah PL, Slebos DJ. Bronchoscopic interventions for severe emphysema: where are we now? Respirology. 2020;25:972–80. doi: 10.1111/resp.13835. PubMed DOI
Klooster K, Slebos DJ. Endobronchial valves for the Treatment of Advanced Emphysema. Chest. 2021;159:1833–42. doi: 10.1016/j.chest.2020.12.007. PubMed DOI PMC
Hopkinson NS, Kemp SV, Toma TP, Hansell DM, Geddes DM, Shah PL, Polkey MI. Atelectasis and survival after bronchoscopic lung volume reduction for COPD. Eur Respir J. 2011;37:1346–51. doi: 10.1183/09031936.00100110. PubMed DOI
Slebos DJ, Shah PL, Herth FJ, Valipour A. Endobronchial valves for endoscopic lung volume reduction: best practice recommendations from Expert Panel on endoscopic lung volume reduction. Respiration. 2017;93:138–50. doi: 10.1159/000453588. PubMed DOI PMC
Morrell NW, Wignall BK, Biggs T, Seed WA. Collateral ventilation and gas exchange in emphysema. Am J Respir Crit Care Med. 1994;150:635–41. doi: 10.1164/ajrccm.150.3.8087331. PubMed DOI
Pu J, Wang Z, Gu S, Fuhrman C, Leader JK, Meng X, Tedrow J, Sciurba FC. Pulmonary fissure integrity and collateral ventilation in COPD patients. PLoS ONE. 2014;9:e96631. doi: 10.1371/journal.pone.0096631. PubMed DOI PMC
Sciurba FC, Ernst A, Herth FJ, Strange C, Criner GJ, Marquette CH, Kovitz KL, Chiacchierini RP, Goldin J, McLennan G, Group VSR. A randomized study of endobronchial valves for advanced emphysema. N Engl J Med. 2010;363:1233–44. doi: 10.1056/NEJMoa0900928. PubMed DOI
Valipour A, Slebos DJ, de Oliveira HG, Eberhardt R, Freitag L, Criner GJ, Herth FJ. Expert statement: pneumothorax associated with endoscopic valve therapy for emphysema–potential mechanisms, treatment algorithm, and case examples. Respiration. 2014;87:513–21. doi: 10.1159/000360642. PubMed DOI
Fiorelli A, D’Andrilli A, Bezzi M, Ibrahim M, Anile M, Diso D, Cusumano G, Terminella A, Luzzi V, Innocenti M, et al. Complications related to endoscopic lung volume reduction for emphysema with endobronchial valves: results of a multicenter study. J Thorac Dis. 2018;10:S3315–25. doi: 10.21037/jtd.2018.06.69. PubMed DOI PMC
Criner GJ, Sue R, Wright S, Dransfield M, Rivas-Perez H, Wiese T, Sciurba FC, Shah PL, Wahidi MM, de Oliveira HG, et al. A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (LIBERATE) Am J Respir Crit Care Med. 2018;198:1151–64. doi: 10.1164/rccm.201803-0590OC. PubMed DOI
Gompelmann D, Herth FJ, Slebos DJ, Valipour A, Ernst A, Criner GJ, Eberhardt R. Pneumothorax following endobronchial valve therapy and its impact on clinical outcomes in severe emphysema. Respiration. 2014;87:485–91. doi: 10.1159/000360641. PubMed DOI
Gompelmann D, Lim HJ, Eberhardt R, Gerovasili V, Herth FJ, Heussel CP, Eichinger M. Predictors of pneumothorax following endoscopic valve therapy in patients with severe emphysema. Int J Chron Obstruct Pulmon Dis. 2016;11:1767–73. doi: 10.2147/COPD.S106439. PubMed DOI PMC
Brown MS, Kim HJ, Abtin FG, Strange C, Galperin-Aizenberg M, Pais R, Da Costa IG, Ordookhani A, Chong D, Ni C, et al. Emphysema lung lobe volume reduction: effects on the ipsilateral and contralateral lobes. Eur Radiol. 2012;22:1547–55. doi: 10.1007/s00330-012-2393-6. PubMed DOI
Rothen HU, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G. Prevention of atelectasis during general anaesthesia. Lancet. 1995;345:1387–91. doi: 10.1016/S0140-6736(95)92595-3. PubMed DOI
Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology. 2003;98:28–33. doi: 10.1097/00000542-200301000-00008. PubMed DOI
Hedenstierna G, Rothen HU. Respiratory function during anesthesia: effects on gas exchange. Compr Physiol. 2012;2:69–96. doi: 10.1002/cphy.c080111. PubMed DOI
Hinz J, Hahn G, Neumann P, Sydow M, Mohrenweiser P, Hellige G, Burchardi H. End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med. 2003;29:37–43. doi: 10.1007/s00134-002-1555-4. PubMed DOI
Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med. 2004;169:791–800. doi: 10.1164/rccm.200301-133OC. PubMed DOI
Frerichs I, Amato MB, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Bohm SH, Teschner E, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93. doi: 10.1136/thoraxjnl-2016-208357. PubMed DOI PMC
Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol (1985) 2012;112:225–36. doi: 10.1152/japplphysiol.01090.2010. PubMed DOI
Lindgren S, Odenstedt H, Erlandsson K, Grivans C, Lundin S, Stenqvist O. Bronchoscopic suctioning may cause lung collapse: a lung model and clinical evaluation. Acta Anaesthesiol Scand. 2008;52:209–18. doi: 10.1111/j.1399-6576.2007.01499.x. PubMed DOI
Eichler L, Mueller J, Grensemann J, Frerichs I, Zollner C, Kluge S. Lung aeration and ventilation after percutaneous tracheotomy measured by electrical impedance tomography in non-hypoxemic critically ill patients: a prospective observational study. Ann Intensive Care. 2018;8:110. doi: 10.1186/s13613-018-0454-y. PubMed DOI PMC
Costa EL, Chaves CN, Gomes S, Beraldo MA, Volpe MS, Tucci MR, Schettino IA, Bohm SH, Carvalho CR, Tanaka H, et al. Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med. 2008;36:1230–8. doi: 10.1097/CCM.0b013e31816a0380. PubMed DOI
Morais CC, De Santis Santiago RR, Filho JR, Hirota AS, Pacce PH, Ferreira JC, Camargo ED, Amato MB, Costa EL. Monitoring of Pneumothorax Appearance with Electrical Impedance Tomography during recruitment maneuvers. Am J Respir Crit Care Med. 2017;195:1070–3. doi: 10.1164/rccm.201609-1780LE. PubMed DOI
Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G. Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand. 1998;42:721–6. doi: 10.1111/j.1399-6576.1998.tb05308.x. PubMed DOI
Frerichs I. Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas. 2000;21:R1–21. doi: 10.1088/0967-3334/21/2/201. PubMed DOI
Fieselmann A, Kowarschik M, Ganguly A, Hornegger J, Fahrig R. Deconvolution-based CT and MR Brain Perfusion Measurement: theoretical model revisited and practical implementation details. Int J Biomed Imaging. 2011;2011:467563. doi: 10.1155/2011/467563. PubMed DOI PMC
Xin Y, Kim T, Winkler T, Brix G, Gaulton T, Gerard SE, Herrmann J, Martin KT, Victor M, Reutlinger K, et al. Improving pulmonary perfusion assessment by dynamic contrast-enhanced computed tomography in an experimental lung injury model. J Appl Physiol (1985) 2023;134:1496–507. doi: 10.1152/japplphysiol.00159.2023. PubMed DOI PMC
Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa EL, Tucci MR, Zin WA, Kavanagh BP, Amato MB. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–7. doi: 10.1164/rccm.201303-0539OC. PubMed DOI
Morais CCA, Koyama Y, Yoshida T, Plens GM, Gomes S, Lima CAS, Ramos OPS, Pereira SM, Kawaguchi N, Yamamoto H, et al. High positive end-expiratory pressure renders spontaneous effort Noninjurious. Am J Respir Crit Care Med. 2018;197:1285–96. doi: 10.1164/rccm.201706-1244OC. PubMed DOI PMC
Macklem PT. Airway obstruction and collateral ventilation. Physiol Rev. 1971;51:368–436. doi: 10.1152/physrev.1971.51.2.368. PubMed DOI
Kuriyama T, Wagner WW., Jr Collateral ventilation may protect against high-altitude pulmonary hypertension. J Appl Physiol Respir Environ Exerc Physiol. 1981;51:1251–6. PubMed
Ingenito EP, Reilly JJ, Mentzer SJ, Swanson SJ, Vin R, Keuhn H, Berger RL, Hoffman A. Bronchoscopic volume reduction: a safe and effective alternative to surgical therapy for emphysema. Am J Respir Crit Care Med. 2001;164:295–301. doi: 10.1164/ajrccm.164.2.2011085. PubMed DOI
Pereira SM, Tucci MR, Morais CCA, Simoes CM, Tonelotto BFF, Pompeo MS, Kay FU, Pelosi P, Vieira JE, Amato MBP. Individual Positive End-Expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and reduce postoperative atelectasis. Anesthesiology. 2018;129:1070–81. doi: 10.1097/ALN.0000000000002435. PubMed DOI
Joyce CJ, Baker AB, Kennedy RR. Gas uptake from an unventilated area of lung: computer model of absorption atelectasis. J Appl Physiol (1985) 1993;74:1107–16. doi: 10.1152/jappl.1993.74.3.1107. PubMed DOI
Dantzker DR, Wagner PD, West JB. Instability of lung units with low Va-Q ratios during O2 breathing. J Appl Physiol. 1975;38:886–95. doi: 10.1152/jappl.1975.38.5.886. DOI
Dale WA, Rahn H. Rate of gas absorption during atelectasis. Am J Physiol. 1952;170:606–13. doi: 10.1152/ajplegacy.1952.170.3.606. PubMed DOI
Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367–520. doi: 10.1152/physrev.00041.2010. PubMed DOI PMC
Brusasco V, Martinez F. Chronic obstructive pulmonary disease. Compr Physiol. 2014;4:1–31. PubMed
Kuriyama T, Latham LP, Horwitz LD, Reeves JT, Wagner WW., Jr Role of collateral ventilation in ventilation-perfusion balance. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:1500–6. PubMed
Pizarro C, Ahmadzadehfar H, Essler M, Tuleta I, Fimmers R, Nickenig G, Skowasch D. Effect of endobronchial valve therapy on pulmonary perfusion and ventilation distribution. PLoS ONE. 2015;10:e0118976. doi: 10.1371/journal.pone.0118976. PubMed DOI PMC
Thomsen C, Theilig D, Herzog D, Poellinger A, Doellinger F, Schreiter N, Schreiter V, Schurmann D, Temmesfeld-Wollbrueck B, Hippenstiel S, et al. Lung perfusion and emphysema distribution affect the outcome of endobronchial valve therapy. Int J Chron Obstruct Pulmon Dis. 2016;11:1245–59. PubMed PMC
Labarca G, Uribe JP, Pacheco C, Folch E, Kheir F, Majid A, Jantz MA, Mehta HJ, Patel N, Herth FJF, Fernandez-Bussy S. Bronchoscopic lung volume reduction with Endobronchial Zephyr Valves for severe Emphysema: a systematic review and Meta-analysis. Respiration. 2019;98:268–78. doi: 10.1159/000499508. PubMed DOI
van Dijk M, Sue R, Criner GJ, Gompelmann D, Herth FJF, Hogarth DK, Klooster K, Kocks JWH, de Oliveira HG, Shah PL, et al. Expert Statement: Pneumothorax Associated with one-way valve therapy for Emphysema: 2020 update. Respiration. 2021;100:969–78. doi: 10.1159/000516326. PubMed DOI PMC
Hartman JE, Vanfleteren L, van Rikxoort EM, Klooster K, Slebos DJ. Endobronchial valves for severe emphysema. Eur Respir Rev 2019, 28. PubMed PMC
Gompelmann D, Benjamin N, Bischoff E, Kontogianni K, Schuhmann M, Hoffmann H, Heussel CP, Herth FJF, Eberhardt R. Survival after Endoscopic Valve Therapy in patients with severe Emphysema. Respiration. 2019;97:145–52. doi: 10.1159/000492274. PubMed DOI
Egenod T, Guibert N, Ammar Y, Kessler R, Toublanc B, Favrolt N, Briault A, Dutau H, Wallyn F, Lachkar S, et al. Endobronchial valves: 1st multicenter retrospective study on the 2-step approach. Respir Med Res. 2023;83:100957. PubMed
Born T, Von Mallinckrodt C, Grandjean P-A, Tekeli N. Bronchoscopic lung volume reduction: do sequential endobronchial valve placements reduce pneumothorax rate? In Interventional pulmonology; 2019.
Bellinger CR, Khan I, Chatterjee AB, Haponik EF. Bronchoscopy safety in patients with chronic obstructive lung disease. J Bronchol Interv Pulmonol. 2017;24:98–103. doi: 10.1097/LBR.0000000000000333. PubMed DOI
Lentz RJ, Low SW, Saettele T, Rickman OB, Aboudara M, Maldonado F. Association between Inspired Oxygen Fraction and Pneumothorax after Endobronchial Valve Placement for Emphysema. Ann Am Thorac Soc. 2023;20:926–9. doi: 10.1513/AnnalsATS.202208-664RL. PubMed DOI
Costa EL, Lima RG, Amato MB. Electrical impedance tomography. Curr Opin Crit Care. 2009;15:18–24. doi: 10.1097/MCC.0b013e3283220e8c. PubMed DOI
Fessler HE, Scharf SM, Permutt S. Improvement in spirometry following lung volume reduction surgery: application of a physiologic model. Am J Respir Crit Care Med. 2002;165:34–40. doi: 10.1164/ajrccm.165.1.2101149. PubMed DOI