Hyperstable, Minimal-Length, and Blunt-Ended Collagen Heterotrimers

. 2025 Jul ; 64 (29) : e202503353. [epub] 20250522

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40344344

Grantová podpora
891009 Marie Sklodowska-Curie
200020_207505 Swiss National Science Foundation - Switzerland
200020_178765 Swiss National Science Foundation - Switzerland

Most natural collagens are heterotrimers-triple helices formed from three non-identical peptide strands. The design of synthetic heterotrimeric collagen is challenging since a mixture of three different peptides can form as many as 27 unique triple helices. Here, we present a general method for the assembly of collagen heterotrimers with a wide range of lengths, thermal stabilities, and strand arrangements driven by complementary interstrand salt bridges between (2S,4S)-4-aminoproline and aspartate residues. We show how kinetic trapping of undesired trimers can be overcome by adjusting the annealing conditions to obtain the target heterotrimeric helix selectively under thermodynamic control. The design rules and annealing methods allowed the creation of the most stable supramolecular heterotrimer (32 residues, Tm = 76 °C) and the shortest stable heterotrimer (17 residues, Tm = 19 °C) to date. Furthermore, frame-shifting enabled, for the first time, the creation of a collagen triple helix with blunt ends.

Zobrazit více v PubMed

M. D. Shoulders, R. T. Raines, Annu. Rev. Biochem. 2009, 78, 929–958, https://doi.org/10.1146/annurev.biochem.77.032207.120833.

J. Bella, Biochem. J. 2016, 473, 1001–1025, https://doi.org/10.1042/bj20151169.

D. Kodr, T. Fiala, H. Wennemers, Tetrahedron Lett. 2024, 138, 154964, https://doi.org/10.1016/j.tetlet.2024.154964.

S. P. Boudko, H. P. Bächinger, Sci. Rep. 2016, 6, 37831, https://doi.org/10.1038/srep37831.

N. B. Hentzen, V. Islami, M. Köhler, R. Zenobi, H. Wennemers, J. Am. Chem. Soc. 2020, 142, 2208–2212, https://doi.org/10.1021/jacs.9b13037.

T. Fiala, E. P. Barros, M.‐O. Ebert, E. Ruijsenaars, S. Riniker, H. Wennemers, J. Am. Chem. Soc. 2022, 144, 18642–18649, https://doi.org/10.1021/jacs.2c08727.

A. S. Dichiara, R. C. Li, P. H. Suen, A. S. Hosseini, R. J. Taylor, A. F. Weickhardt, D. Malhotra, D. R. Mccaslin, M. D. Shoulders, Nat. Commun. 2018, 9, 4206, https://doi.org/10.1038/s41467‐018‐06185‐2.

K. M. Yammine, R. C. Li, I. M. Borgula, S. Mirda Abularach, A. S. Dichiara, R. T. Raines, M. D. Shoulders, Proc. Natl. Acad. Sci. USA 2024, 121, e2412948121, https://doi.org/10.1073/pnas.2412948121.

A. A. Jalan, J. D. Hartgerink, Curr. Opin. Chem. Biol. 2013, 17, 960–967, https://doi.org/10.1016/j.cbpa.2013.10.019.

W. Cai, J. P. Taulane, N. A. Sorto, A. Oganesyan, C. G. Gutierrez, M. Goodman, Lett. Org. Chem. 2007, 4, 96–101, https://doi.org/10.2174/157017807780414163.

G. A. Kinberger, W. Cai, M. Goodman, J. Am. Chem. Soc. 2002, 124, 15162–15163, https://doi.org/10.1021/ja021203l.

J. Kwak, A. D. Capua, E. Locardi, M. Goodman, J. Am. Chem. Soc. 2002, 124, 14085–14091, https://doi.org/10.1021/ja0209621.

G. Melacini, Y. Feng, M. Goodman, J. Am. Chem. Soc. 1996, 118, 10359–10364, https://doi.org/10.1021/ja9612615.

D. Barth, H.‐J. Musiol, M. Schütt, S. Fiori, A. G. Milbradt, C. Renner, L. Moroder, Chem. Eur. J. 2003, 9, 3692–3702, https://doi.org/10.1002/chem.200304917.

D. Barth, O. Kyrieleis, S. Frank, C. Renner, L. Moroder, Chem. Eur. J. 2003, 9, 3703–3714, https://doi.org/10.1002/chem.200304918.

J. Ottl, L. Moroder, J. Am. Chem. Soc. 1999, 121, 653–661, https://doi.org/10.1021/ja983456d.

F. W. Kotch, R. T. Raines, Proc. Natl. Acad. Sci. 2006, 103, 3028–3033, https://doi.org/10.1073/pnas.0508783103.

N. B. Hentzen, L. E. J. Smeenk, J. Witek, S. Riniker, H. Wennemers, J. Am. Chem. Soc. 2017, 139, 12815–12820, https://doi.org/10.1021/jacs.7b07498.

J. A. Hodges, R. T. Raines, J. Am. Chem. Soc. 2005, 127, 15923–15932, https://doi.org/10.1021/ja054674r.

S. A. H. Hulgan, J. D. Hartgerink, Biomacromolecules 2022, 23, 1475–1489, https://doi.org/10.1021/acs.biomac.2c00028.

I. C. Tanrikulu, R. T. Raines, J. Am. Chem. Soc. 2014, 136, 13490–13493, https://doi.org/10.1021/ja505426g.

J. A. Fallas, L. E. R. O'Leary, J. D. Hartgerink, Chem. Soc. Rev. 2010, 39, 3510–3527, https://doi.org/10.1039/b919455j.

V. Gauba, J. D. Hartgerink, J. Am. Chem. Soc. 2007, 129, 15034–15041, https://doi.org/10.1021/ja075854z.

L. E. Russell, J. A. Fallas, J. D. Hartgerink, J. Am. Chem. Soc. 2010, 132, 3242–3243, https://doi.org/10.1021/ja909720g.

H. Zheng, C. Lu, J. Lan, S. Fan, V. Nanda, F. Xu, Proc. Natl. Acad. Sci. USA 2018, 115, 6207–6212, https://doi.org/10.1073/pnas.1802171115.

C. M. Peterson, M. R. Helterbrand, J. D. Hartgerink, Biomacromolecules 2022, 23, 2396–2403, https://doi.org/10.1021/acs.biomac.2c00155.

C. C. Cole, D. R. Walker, S. A. H. Hulgan, B. H. Pogostin, J. W. R. Swain, M. D. Miller, W. Xu, R. Duella, M. Misiura, X. Wang, A. B. Kolomeisky, G. N. Philips, J. D. Hartgerink, Nat. Chem. 2024, 16, 1698–1704, https://doi.org/10.1038/s41557‐024‐01573‐2.

For a recent example of intermolecular salt bridges arising from collagen, see N. Dwivedi, B. Patra, F. Mentink‐Vigier, S. Wi, N. Sinha, J. Am. Chem. Soc. 2024, 146, 23663–23668, https://doi.org/10.1021/jacs.4c05539.

C. C. Cole, M. Misiura, S. A. H. Hulgan, C. M. Peterson, J. W. Williams, A. B. Kolomeisky, J. D. Hartgerink, Biomacromolecules 2022, 23, 4645–4654, https://doi.org/10.1021/acs.biomac.2c00856.

C.‐H. Chiang, J.‐C. Horng, J. Phys. Chem. B 2016, 120, 1205–1211, https://doi.org/10.1021/acs.jpcb.5b11189.

T.‐J. Yao, Y.‐E. Ke, W.‐L. Lin, Y.‐C. Lin, C.‐H. Yang, T.‐L. Hsu, J.‐C. Horng, J. Phys. Chem. B 2025, https://doi.org/10.1021/acs.jpcb.4c08691.

D. R. Walker, A. A. Alizadehmojarad, A. B. Kolomeisky, J. D. Hartgerink, Biomacromolecules 2021, 22, 2137–2147, https://doi.org/10.1021/acs.biomac.1c00234.

V. Islami, P. Bittner, T. Fiala, N. B. Hentzen, R. Zenobi, H. Wennemers, J. Am. Chem. Soc. 2024, 146, 1789–1793, https://doi.org/10.1021/jacs.3c12295.

T. Fiala, E. P. Barros, R. Heeb, S. Riniker, H. Wennemers, Angew. Chem. Int. Ed. 2023, 62, e202214728, https://doi.org/10.1002/anie.202214728.

R. S. Erdmann, H. Wennemers, Angew. Chem. Int. Ed. 2011, 50, 6835–6838, https://doi.org/10.1002/anie.201008118.

R. S. Erdmann, H. Wennemers, J. Am. Chem. Soc. 2010, 132, 13957–13959, https://doi.org/10.1021/ja103392t.

R. S. Erdmann, H. Wennemers, J. Am. Chem. Soc. 2012, 134, 17117–17124, https://doi.org/10.1021/ja3066418.

T. Fiala, R. Heeb, L. Vigliotti, H. Wennemers, Biomacromolecules 2023, 24, 3954–3960, https://doi.org/10.1021/acs.biomac.3c00241.

M. Köhler, A. Marchand, N. B. Hentzen, J. Egli, A. I. Begley, H. Wennemers, R. Zenobi, Chem. Sci. 2019, 10, 9829–9835, https://doi.org/10.1039/c9sc03248g.

For details on the native mass‐spectrometric analyses, see ref. 39 and the supporting information, chapter 5.

Of note, a single transition, when monitored by CD spectroscopy, can arise from mixtures of coexisting triple helices.

For a more extensive discussion on thermodynamic and kinetic control over heterotrimer formation, see the supporting information Figures S4 and S5.

D. R. Walker, S. A. H. Hulgan, C. M. Peterson, I.‐C. Li, K. J. Gonzalez, J. D. Hartgerink, Nat. Chem. 2021, 13, 260–269, https://doi.org/10.1038/s41557‐020‐00626‐6.

I. C. Tanrikulu, W. M. Westler, A. J. Ellison, J. L. Markley, R. T. Raines, J. Am. Chem. Soc. 2020, 142, 1137–1141, https://doi.org/10.1021/jacs.9b07583.

H. Wennemers, J. Kisunzu, B. Lewandowski, U. Lewandowska, Encyclopedia of Reagents for Organic Synthesis 2016, 1–5, https://doi.org/10.1002/047084289x.rn01954.

J. Engel, H.‐T. Chen, D. J. Prockop, H. Klump, Biopolymers 1977, 16, 601–622, https://doi.org/10.1002/bip.1977.360160310.

S. Frank, R. A. Kammerer, D. Mechling, T. Schulthess, R. Landwehr, J. Bann, Y. Guo, A. Lustig, H. P. Bächinger, J. Engel, J. Mol. Biol. 2001, 308, 1081–1089, https://doi.org/10.1006/jmbi.2001.4644.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...