Cyclodextrin-Modified Capillary Zone Electrophoresis for the Chiral Analysis of Proline and Hydroxyproline Stereoisomers in Chicken Collagen Hydrolysates
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40565295
PubMed Central
PMC12192952
DOI
10.3390/ijms26125832
PII: ijms26125832
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrophoresis, chiral separations, collagen, cyclodextrins, derivatization, fast-growing chickens, fluorescent detection, hydroxyprolines, spaghetti meat, wooden breast,
- MeSH
- cyklodextriny * chemie MeSH
- elektroforéza kapilární metody MeSH
- hydroxyprolin * chemie analýza MeSH
- kolagen * chemie MeSH
- kur domácí MeSH
- prolin * chemie analýza MeSH
- proteinové hydrolyzáty * chemie MeSH
- stereoizomerie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklodextriny * MeSH
- hydroxyprolin * MeSH
- kolagen * MeSH
- prolin * MeSH
- proteinové hydrolyzáty * MeSH
The stability of collagen, the most abundant protein in humans and many animals, is related to the hydroxylation of L-proline, a post-translational modification occurring at carbon 3 and 4 on its pyrrolidine ring. Collagens of different origins have shown different proline hydroxylation levels, making hydroxyprolines useful biomarkers in structure characterizations. The presence of two chiral carbon atoms, 3-hydroxyproline and 4-hydroxyproline, results in eight stereoisomers (four pairs of enantiomers) whose quantitation in collagen hydrolysates requires enantioselective analytical methods. Capillary electrophoresis was applied for the separation and quantitation of the eight stereoisomers of 3- and 4-hydroxyproline and D,L-proline in collagen hydrolysates. The developed method is based on the derivatization with the chiral reagent (R)-(-)-4-(3-Isothiocyanatopyrrolidin-yl)-7-nitro-2,1,3-benzoxadiazole, enabling the use of a light-emitting diode-induced fluorescence detector for high sensitivity. The separation of the considered compounds was accomplished in less than 10 min, using a 500 mM acetate buffer pH 3.5 supplemented with 5 mM of heptakis(2,6-di-O-methyl)-β-cyclodextrin as the chiral selector. The method was fully validated and showed the adequate sensitivity for the application to samples of collagen hydrolysates. The analysis of samples extracted from chicken Pectoralis major muscles affected by growth-related myopathies showed different stereoisomer patterns compared to those from the unaffected control samples.
Department of Agricultural and Food Sciences University of Bologna 47521 Cesena Italy
Department of Drug Sciences University of Pavia Viale Taramelli 12 27100 Pavia Italy
Department of Pharmacy and Biotechnology University of Bologna Via Belmeloro 6 40126 Bologna Italy
Zobrazit více v PubMed
Sowbhagya R., Muktha H., Ramakrishnaiah T.N., Surendra A.S., Sushma S.M., Tejaswini C., Roopini K., Rajashekara S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell. 2024;90:102497. doi: 10.1016/j.tice.2024.102497. PubMed DOI
Hu H., He W., Wu G. Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids. 2022;54:513–528. doi: 10.1007/s00726-021-03056-x. PubMed DOI
Rappu P., Salo A.M., Myllyharju J., Heino J. Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem. 2019;63:325–335. doi: 10.1042/EBC20180053. PubMed DOI PMC
Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC
Polly Chan S.W., Greaves J., Da Silva N.A., Wang S.-W. Assaying proline hydroxylation in recombinant collagen variants by liquid chromatography-mass spectrometry. BMC Biotechnol. 2012;12:51. doi: 10.1186/1472-6750-12-51. PubMed DOI PMC
Gjaltema R.A.F., Bank R.A. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit. Rev. Biochem. Mol. Biol. 2016;52:74–95. doi: 10.1080/10409238.2016.1269716. PubMed DOI
Dziewiatkowski D.D., Hascall V.C., Riolo R.L. Epimerization of trans-4-hydroxy-Lproline to cis-4-hydroxy-D-proline during acid hydrolysis of collagen. Anal. Biochem. 1972;49:550–558. doi: 10.1016/0003-2697(72)90461-7. PubMed DOI
Langrock T., García-Villar N., Hoffmann R. Analysis of hydroxyproline isomers and hydroxylysine by reversed-phase HPLC and mass spectrometry. J. Chromatogr. B. 2007;847:282–288. doi: 10.1016/j.jchromb.2006.10.015. PubMed DOI
Lioi M., Tengattini S., Gotti R., Bagatin F., Galliani S., Massolini G., Daly S., Temporini C. Chromatographic separation by RPLC-ESI-MS of all hydroxyproline isomers for the characterization of collagens from different sources. J. Chromatogr. A. 2024;1720:464771. doi: 10.1016/j.chroma.2024.464771. PubMed DOI
Lüpke M., Brückner H. Gas chromatographic evaluation of amino acid epimerisation in the course of gelatin manufacturing and processing. Z. Leb. Unters Forsch. A. 1998;206:323–328. doi: 10.1007/s002170050266. DOI
Opekar S., Zahradníčková H., Vodrážka P., Řimnáčová L., Šimek P., Moos M. A chiral GC–MS method for analysis of secondary amino acids after heptafluorobutyl chloroformate & methylamine derivatization. Amino Acids. 2021;53:347–358. doi: 10.1007/s00726-021-02949-1. PubMed DOI
Bernardo-Bermejo S., Sánchez-López E., Castro-Puyana M., Marina M.L. Chiral capillary electrophoresis. TrAC Trends Anal. Chem. 2020;124:115807. doi: 10.1016/j.trac.2020.115807. DOI
Chankvetadze B., Scriba G.K.E. Cyclodextrins as chiral selectors in capillary electrophoresis: Recent trends in mechanistic studies. TrAC Trends Anal. Chem. 2023;160:116987. doi: 10.1016/j.trac.2023.116987. DOI
Peluso P., Chankvetadze B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: Structures, features, application, and molecular modeling. Electrophoresis. 2021;42:1676–1708. doi: 10.1002/elps.202100053. PubMed DOI
Orlandini S., Hancu G., Szabó Z.I., Modroiu A., Papp L.A., Gotti R., Furlanetto S. New trends in the quality control of enantiomeric drugs: Quality by design-compliant development of chiral capillary electrophoresis methods. Molecules. 2022;27:7058. doi: 10.3390/molecules27207058. PubMed DOI PMC
Yi G., Ji B., Du J., Zhou J., Chen Z., Mao Y., Wei Y., Xia Z., Fu Q. Enhanced enantioseparation performance in cyclodextrin-electrokinetic chromatography using quinine modified polydopamine coated capillary column. Microchem. J. 2021;167:106315. doi: 10.1016/j.microc.2021.106315. DOI
Chu Q., Evans B.T., Zeece M.G. Quantitative separation of 4-hydroxyproline from skeletal muscle collagen by micellar electrokinetic capillary electrophoresis. J. Chromatogr. B. 1997;692:293–301. doi: 10.1016/S0378-4347(97)00007-8. PubMed DOI
Bernardo-Bermejo S., Adámez-Rodríguez S., Sánchez-López E., Castro-Puyana M., Marina M.L. Stereoselective separation of 4-hydroxyproline by electrokinetic chromatography. Microchem. J. 2023;185:108279. doi: 10.1016/j.microc.2022.108279. DOI
Toyo’oka T., Liu Y.-M. Development of Optically Active Fluorescent Edman-type Reagents. Analyst. 1995;120:385–390. doi: 10.1039/an9952000385. DOI
Huang Y., Zhang W., Shi Q., Toyo’oka T., Min J.Z. Determination of D,L-Amino Acids in Collagen from Pig and Cod Skins by UPLC Using Pre-column Fluorescent Derivatization. Food Anal. Meth. 2018;11:3130–3137. doi: 10.1007/s12161-018-1288-9. DOI
Gotti R., Pasquini B., Orlandini S., Furlanetto S. Recent applications of the derivatization techniques in capillary electrophoresis. J. Pharm. Biomed. Anal. Open. 2023;1:100003. doi: 10.1016/j.jpbao.2023.100003. DOI
Molnar-Perl I., Vasanits A. Stability and characteristics of the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-L-cysteine reagents and their amino acid derivatives measured by high-performance liquid chromatography. J. Chromatogr. A. 1999;835:73–91. doi: 10.1016/S0021-9673(98)01088-7. PubMed DOI
Hanczko R., Kőrös Á., Tóth F., Molnár-Perl I. Behavior and characteristics of biogenic amines, ornithine and lysine derivatized with the o-phthalaldehyde–ethanethiol–fluorenylmethyl chloroformate reagent. J. Chromatogr. A. 2005;1087:210–222. doi: 10.1016/j.chroma.2004.12.056. PubMed DOI
ICH Harmonised Tripartite Guideline . Validation of Analytical Procedures Q2(R2) International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; Geneva, Switzerland: 2022.
Ishimoto S., Goto I., Kuroiwa Y. Early morphological changes in the striated muscles in normal and dystrophic chickens. J. Comp. Path. 1988;98:69–79. doi: 10.1016/0021-9975(88)90031-X. PubMed DOI
Pizzey J.A., Barnard E.A. Structural change in muscles of the dystrophic chicken. II Progression of the histopathology in the pectorals muscles. Neuropathol. Appl. Neurobiol. 1983;9:149–164. doi: 10.1111/j.1365-2990.1983.tb00332.x. PubMed DOI
DeMichele S.J., Glenn Brown R., Krasin B.W., Sweeny P.R. Connective tissue metabolism in muscular dystrophy. Amino acid composition of native types I, III, IV an V collagen isolated from the gastrocnemius muscle of embryonic chickens with genetic muscular dystrophy. Comp. Biochem. Physiol. 1985;81B:149–157. doi: 10.1016/0305-0491(85)90176-2. PubMed DOI
Mazzoni M., Soglia F., Petracci M., Sirri F., Lattanzio G., Clavenzani P. Fiber metabolism, procollagen and collagen type III immunoreactivity in broiler pectoralis major affected by muscles abnormalities. Animals. 2020;10:1081. doi: 10.3390/ani10061081. PubMed DOI PMC
Soglia F., Petracci M., Davoli R., Zappaterra M. A critical review of the mechanisms involved in the occurrence of growth related abnormalities affecting broiler chicken breast muscles. Poult. Sci. 2021;100:101180. doi: 10.1016/j.psj.2021.101180. PubMed DOI PMC
Liu X., Wu H., Byrne M., Krane S., Jaenisch R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc. Natl. Acad. Sci. USA. 1997;94:1852–1856. doi: 10.1073/pnas.94.5.1852. PubMed DOI PMC
Gorres K.L., Raines R.T. Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 2010;45:106–124. doi: 10.3109/10409231003627991. PubMed DOI PMC
Krane S.K. The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids. 2008;35:703–710. doi: 10.1007/s00726-008-0073-2. PubMed DOI
Zahradníčková H., Opekar S., Řimnáčová L., Šimek P., Moos M. Chiral secondary amino acids, their importance, and methods of analysis. Amino Acids. 2022;54:687–719. doi: 10.1007/s00726-022-03136-6. PubMed DOI