Cyclodextrin-Modified Capillary Zone Electrophoresis for the Chiral Analysis of Proline and Hydroxyproline Stereoisomers in Chicken Collagen Hydrolysates

. 2025 Jun 18 ; 26 (12) : . [epub] 20250618

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40565295

The stability of collagen, the most abundant protein in humans and many animals, is related to the hydroxylation of L-proline, a post-translational modification occurring at carbon 3 and 4 on its pyrrolidine ring. Collagens of different origins have shown different proline hydroxylation levels, making hydroxyprolines useful biomarkers in structure characterizations. The presence of two chiral carbon atoms, 3-hydroxyproline and 4-hydroxyproline, results in eight stereoisomers (four pairs of enantiomers) whose quantitation in collagen hydrolysates requires enantioselective analytical methods. Capillary electrophoresis was applied for the separation and quantitation of the eight stereoisomers of 3- and 4-hydroxyproline and D,L-proline in collagen hydrolysates. The developed method is based on the derivatization with the chiral reagent (R)-(-)-4-(3-Isothiocyanatopyrrolidin-yl)-7-nitro-2,1,3-benzoxadiazole, enabling the use of a light-emitting diode-induced fluorescence detector for high sensitivity. The separation of the considered compounds was accomplished in less than 10 min, using a 500 mM acetate buffer pH 3.5 supplemented with 5 mM of heptakis(2,6-di-O-methyl)-β-cyclodextrin as the chiral selector. The method was fully validated and showed the adequate sensitivity for the application to samples of collagen hydrolysates. The analysis of samples extracted from chicken Pectoralis major muscles affected by growth-related myopathies showed different stereoisomer patterns compared to those from the unaffected control samples.

Zobrazit více v PubMed

Sowbhagya R., Muktha H., Ramakrishnaiah T.N., Surendra A.S., Sushma S.M., Tejaswini C., Roopini K., Rajashekara S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell. 2024;90:102497. doi: 10.1016/j.tice.2024.102497. PubMed DOI

Hu H., He W., Wu G. Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids. 2022;54:513–528. doi: 10.1007/s00726-021-03056-x. PubMed DOI

Rappu P., Salo A.M., Myllyharju J., Heino J. Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem. 2019;63:325–335. doi: 10.1042/EBC20180053. PubMed DOI PMC

Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC

Polly Chan S.W., Greaves J., Da Silva N.A., Wang S.-W. Assaying proline hydroxylation in recombinant collagen variants by liquid chromatography-mass spectrometry. BMC Biotechnol. 2012;12:51. doi: 10.1186/1472-6750-12-51. PubMed DOI PMC

Gjaltema R.A.F., Bank R.A. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit. Rev. Biochem. Mol. Biol. 2016;52:74–95. doi: 10.1080/10409238.2016.1269716. PubMed DOI

Dziewiatkowski D.D., Hascall V.C., Riolo R.L. Epimerization of trans-4-hydroxy-Lproline to cis-4-hydroxy-D-proline during acid hydrolysis of collagen. Anal. Biochem. 1972;49:550–558. doi: 10.1016/0003-2697(72)90461-7. PubMed DOI

Langrock T., García-Villar N., Hoffmann R. Analysis of hydroxyproline isomers and hydroxylysine by reversed-phase HPLC and mass spectrometry. J. Chromatogr. B. 2007;847:282–288. doi: 10.1016/j.jchromb.2006.10.015. PubMed DOI

Lioi M., Tengattini S., Gotti R., Bagatin F., Galliani S., Massolini G., Daly S., Temporini C. Chromatographic separation by RPLC-ESI-MS of all hydroxyproline isomers for the characterization of collagens from different sources. J. Chromatogr. A. 2024;1720:464771. doi: 10.1016/j.chroma.2024.464771. PubMed DOI

Lüpke M., Brückner H. Gas chromatographic evaluation of amino acid epimerisation in the course of gelatin manufacturing and processing. Z. Leb. Unters Forsch. A. 1998;206:323–328. doi: 10.1007/s002170050266. DOI

Opekar S., Zahradníčková H., Vodrážka P., Řimnáčová L., Šimek P., Moos M. A chiral GC–MS method for analysis of secondary amino acids after heptafluorobutyl chloroformate & methylamine derivatization. Amino Acids. 2021;53:347–358. doi: 10.1007/s00726-021-02949-1. PubMed DOI

Bernardo-Bermejo S., Sánchez-López E., Castro-Puyana M., Marina M.L. Chiral capillary electrophoresis. TrAC Trends Anal. Chem. 2020;124:115807. doi: 10.1016/j.trac.2020.115807. DOI

Chankvetadze B., Scriba G.K.E. Cyclodextrins as chiral selectors in capillary electrophoresis: Recent trends in mechanistic studies. TrAC Trends Anal. Chem. 2023;160:116987. doi: 10.1016/j.trac.2023.116987. DOI

Peluso P., Chankvetadze B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: Structures, features, application, and molecular modeling. Electrophoresis. 2021;42:1676–1708. doi: 10.1002/elps.202100053. PubMed DOI

Orlandini S., Hancu G., Szabó Z.I., Modroiu A., Papp L.A., Gotti R., Furlanetto S. New trends in the quality control of enantiomeric drugs: Quality by design-compliant development of chiral capillary electrophoresis methods. Molecules. 2022;27:7058. doi: 10.3390/molecules27207058. PubMed DOI PMC

Yi G., Ji B., Du J., Zhou J., Chen Z., Mao Y., Wei Y., Xia Z., Fu Q. Enhanced enantioseparation performance in cyclodextrin-electrokinetic chromatography using quinine modified polydopamine coated capillary column. Microchem. J. 2021;167:106315. doi: 10.1016/j.microc.2021.106315. DOI

Chu Q., Evans B.T., Zeece M.G. Quantitative separation of 4-hydroxyproline from skeletal muscle collagen by micellar electrokinetic capillary electrophoresis. J. Chromatogr. B. 1997;692:293–301. doi: 10.1016/S0378-4347(97)00007-8. PubMed DOI

Bernardo-Bermejo S., Adámez-Rodríguez S., Sánchez-López E., Castro-Puyana M., Marina M.L. Stereoselective separation of 4-hydroxyproline by electrokinetic chromatography. Microchem. J. 2023;185:108279. doi: 10.1016/j.microc.2022.108279. DOI

Toyo’oka T., Liu Y.-M. Development of Optically Active Fluorescent Edman-type Reagents. Analyst. 1995;120:385–390. doi: 10.1039/an9952000385. DOI

Huang Y., Zhang W., Shi Q., Toyo’oka T., Min J.Z. Determination of D,L-Amino Acids in Collagen from Pig and Cod Skins by UPLC Using Pre-column Fluorescent Derivatization. Food Anal. Meth. 2018;11:3130–3137. doi: 10.1007/s12161-018-1288-9. DOI

Gotti R., Pasquini B., Orlandini S., Furlanetto S. Recent applications of the derivatization techniques in capillary electrophoresis. J. Pharm. Biomed. Anal. Open. 2023;1:100003. doi: 10.1016/j.jpbao.2023.100003. DOI

Molnar-Perl I., Vasanits A. Stability and characteristics of the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-L-cysteine reagents and their amino acid derivatives measured by high-performance liquid chromatography. J. Chromatogr. A. 1999;835:73–91. doi: 10.1016/S0021-9673(98)01088-7. PubMed DOI

Hanczko R., Kőrös Á., Tóth F., Molnár-Perl I. Behavior and characteristics of biogenic amines, ornithine and lysine derivatized with the o-phthalaldehyde–ethanethiol–fluorenylmethyl chloroformate reagent. J. Chromatogr. A. 2005;1087:210–222. doi: 10.1016/j.chroma.2004.12.056. PubMed DOI

ICH Harmonised Tripartite Guideline . Validation of Analytical Procedures Q2(R2) International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; Geneva, Switzerland: 2022.

Ishimoto S., Goto I., Kuroiwa Y. Early morphological changes in the striated muscles in normal and dystrophic chickens. J. Comp. Path. 1988;98:69–79. doi: 10.1016/0021-9975(88)90031-X. PubMed DOI

Pizzey J.A., Barnard E.A. Structural change in muscles of the dystrophic chicken. II Progression of the histopathology in the pectorals muscles. Neuropathol. Appl. Neurobiol. 1983;9:149–164. doi: 10.1111/j.1365-2990.1983.tb00332.x. PubMed DOI

DeMichele S.J., Glenn Brown R., Krasin B.W., Sweeny P.R. Connective tissue metabolism in muscular dystrophy. Amino acid composition of native types I, III, IV an V collagen isolated from the gastrocnemius muscle of embryonic chickens with genetic muscular dystrophy. Comp. Biochem. Physiol. 1985;81B:149–157. doi: 10.1016/0305-0491(85)90176-2. PubMed DOI

Mazzoni M., Soglia F., Petracci M., Sirri F., Lattanzio G., Clavenzani P. Fiber metabolism, procollagen and collagen type III immunoreactivity in broiler pectoralis major affected by muscles abnormalities. Animals. 2020;10:1081. doi: 10.3390/ani10061081. PubMed DOI PMC

Soglia F., Petracci M., Davoli R., Zappaterra M. A critical review of the mechanisms involved in the occurrence of growth related abnormalities affecting broiler chicken breast muscles. Poult. Sci. 2021;100:101180. doi: 10.1016/j.psj.2021.101180. PubMed DOI PMC

Liu X., Wu H., Byrne M., Krane S., Jaenisch R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc. Natl. Acad. Sci. USA. 1997;94:1852–1856. doi: 10.1073/pnas.94.5.1852. PubMed DOI PMC

Gorres K.L., Raines R.T. Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 2010;45:106–124. doi: 10.3109/10409231003627991. PubMed DOI PMC

Krane S.K. The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids. 2008;35:703–710. doi: 10.1007/s00726-008-0073-2. PubMed DOI

Zahradníčková H., Opekar S., Řimnáčová L., Šimek P., Moos M. Chiral secondary amino acids, their importance, and methods of analysis. Amino Acids. 2022;54:687–719. doi: 10.1007/s00726-022-03136-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...