Leishmania mexicana pathogenicity requires flagellar assembly but not motility

. 2025 Dec ; 16 (1) : 2521478. [epub] 20250702

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40602995

Grantová podpora
Wellcome Trust - United Kingdom

Protists of the order Trypanosomatida possess a single multifunctional flagellum, which powers cellular displacement and mediates attachment to tissues of the arthropod vector. The kinetoplastid flagellar cytoskeleton consists of a nine-microtubule doublet axoneme; further structural elaborations, which can vary between species and life cycle stages, include the assembly of axonemal dynein complexes, a pair of singlet microtubules and the extra-axonemal paraflagellar rod. The intracellular amastigote forms of Leishmania spp. build a short, non-motile cilium whose function has remained enigmatic. Here, we used a panel of 25 barcoded promastigote cell lines, including mutants lacking genes encoding flagellar assembly proteins, axonemal proteins required for normal motility, or flagellar membrane proteins to examine how these defects impact on their virulence in macrophages and mice. Mutants lacking the intraflagellar transport (IFT) protein 88 were avirulent indicating that assembly of a flagellum is necessary to allow for Leishmania survival in a mammalian host. A similarly severe loss of virulence was observed upon deletion of BBS2, a core component of the BBSome complex, which may act as a cargo adapter for IFT. By contrast, promastigotes that were unable to beat their flagella due to loss of core axonemal proteins could establish and sustain an infection and only showed a small reduction of parasite burden in vivo compared to the parental cell lines. These results confirm that flagellar motility is not necessary for mammalian infection, but flagellum assembly and the integrity of the BBSome are essential for pathogenicity.

Zobrazit více v PubMed

Rao SPS, Barrett MP, Dranoff G, et al. Drug discovery for kinetoplastid Diseases: future directions. ACS Infect Dis. 2019;5(2):152–13. doi: 10.1021/acsinfecdis.8b00298 PubMed DOI

Saez Conde J, Dean S.. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol. 2022;237(6):2654–2667. doi: 10.1002/jcp.30778 PubMed DOI PMC

Absalon S, Blisnick T, Kohl L, et al. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell. 2008;19(3):929–944. doi: 10.1091/mbc.e07-08-0749 PubMed DOI PMC

Taschner M, Lorentzen E. The intraflagellar transport machinery. Cold Spring Harb Perspect Biol. 2016;8(10):a028092. doi: 10.1101/cshperspect.a028092 PubMed DOI PMC

van Dam TJ, Townsend MJ, Turk M, et al. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc Natl Acad Sci USA. 2013;110(17):6943–6948. doi: 10.1073/pnas.1221011110 PubMed DOI PMC

Wingfield JL, Lechtreck KF, Lorentzen E, et al. Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem. 2018;62(6):753–763. doi: 10.1042/EBC20180030 PubMed DOI PMC

Vasquez SSV, van Dam J, Wheway G, et al. An updated SYSCILIA gold standard (SCGSv2) of known ciliary genes, revealing the vast progress that has been made in the cilia research field. Mol Biol Cell. 2021;32(22):br13. doi: 10.1091/mbc.E21-05-0226 PubMed DOI PMC

Broadhead R, Dawe HR, Farr H, et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature. 2006;440(7081):224–227. doi: 10.1038/nature04541 PubMed DOI

Subota I, Julkowska D, Vincensini L, et al. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol Cell Proteomics. 2014;13(7):1769–1786. doi: 10.1074/mcp.M113.033357 PubMed DOI PMC

van Dam TJ, Wheway G, Slaats GG, et al. The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia. 2013;2(1):7. doi: 10.1186/2046-2530-2-7 PubMed DOI PMC

Oberholzer M, Langousis G, Nguyen HT, et al. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious PubMed DOI PMC

Beneke T, Demay F, Hookway E, et al. Genetic dissection of a PubMed DOI PMC

Kohl L, Robinson D, Bastin P. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. Embo J. 2003;22(20):5336–5346. doi: 10.1093/emboj/cdg518 PubMed DOI PMC

Sunter J, Gull K. The flagellum attachment zone: ‘the cellular ruler’ of trypanosome morphology. Trends Parasitol. 2016;32:309–324. doi: 10.1016/j.pt.2015.12.010 PubMed DOI PMC

Sunter JD, Varga V, Dean S, et al. A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes. J Cell Sci. 2015;128(8):1580–1594. doi: 10.1242/jcs.166447 PubMed DOI PMC

Ralston KS, Hill KL, Burleigh BA. TrypanTrypanIn, a component of the flagellar dynein regulatory complex, is essential in bloodstream form African trypanosomes. PLOS Pathog. 2006;2(9):e101. doi: 10.1371/journal.ppat.0020101 PubMed DOI PMC

Griffiths S, Portman N, Taylor PR, et al. RNA interference mutant induction in vivo demonstrates the essential nature of trypanosome flagellar function during mammalian infection. Eukaryot Cell. 2007;6(7):1248–1250. doi: 10.1128/EC.00110-07 PubMed DOI PMC

Shimogawa MM, Ray SS, Kisalu N, et al. Parasite motility is critical for virulence of African trypanosomes. Sci Rep. 2018;8(1):9122. doi: 10.1038/s41598-018-27228-0 PubMed DOI PMC

Branche C, Kohl L, Toutirais G, et al. Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci. 2006;119(Pt 16):3443–3455. doi: 10.1242/jcs.03078 PubMed DOI

Rotureau B, Ooi CP, Huet D, et al. Forward motility is essential for trypanosome infection in the tsetse fly. Cell Microbiol. 2014;16(3):425–433. doi: 10.1111/cmi.12230 PubMed DOI

Sunter JD, Moreira-Leite F, Gull K. Dependency relationships between IFT-dependent flagellum elongation and cell morphogenesis in PubMed DOI PMC

Beneke T, Madden R, Makin L, et al. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci. 2017;4(5):170095. doi: 10.1098/rsos.170095 PubMed DOI PMC

Dobrowolski JM, Sibley LD. PubMed DOI

Frenal K, Dubremetz JF, Lebrun M, et al. Gliding motility powers invasion and egress in Apicomplexa. Nat Rev Microbiol. 2017;15(11):645–660. doi: 10.1038/nrmicro.2017.86 PubMed DOI

Chang KP. PubMed DOI

Walker DM, Oghumu S, Gupta G, et al. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci. 2014;71(7):1245–1263. doi: 10.1007/s00018-013-1491-1 PubMed DOI PMC

Zenian A, Rowles P, Gingell D. Scanning electron-microscopic study of the uptake of PubMed DOI

Forestier CL, Machu C, Loussert C, et al. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host & Microbe. 2011;9(4):319–330. doi: 10.1016/j.chom.2011.03.011 PubMed DOI

Courret N, Fréhel C, Gouhier N, et al. Biogenesis of PubMed DOI

Pearson RD, Sullivan JA, Roberts D, et al. Interaction of PubMed DOI PMC

Rittig MG, Schröppel K, Seack K-H, et al. Coiling phagocytosis of trypanosomatids and fungal cells. Infect Immun. 1998;66(9):4331–4339. doi: 10.1128/IAI.66.9.4331-4339.1998 PubMed DOI PMC

Findlay RC, Osman M, Spence KA, et al. High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective PubMed DOI PMC

Cuvillier A, Redon F, Antoine J-C, et al. LdARL-3A, a PubMed DOI

Cuvillier A, Miranda JC, Ambit A, et al. Abortive infection of PubMed DOI

Harder S, Thiel M, Clos J, et al. Characterization of a subunit of the outer dynein arm docking complex necessary for correct flagellar assembly in PubMed DOI PMC

Peters NC, Egen JG, Secundino N, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891):970–974. doi: 10.1126/science.1159194 PubMed DOI PMC

Wheeler RJ, Gluenz E, Gull K. Routes to a 9+0 flagellum: basal body multipotency and axonemal plasticity. Nat Commun. 2015;6(1):8964. doi: 10.1038/ncomms9964 PubMed DOI PMC

Gull K. The parasite point of view: insights and questions on the cell biology of Trypanosoma and Leishmania parasite-phagocyte interactions. In: Russell D, Gordon S, editors. Phagocyte-pathogen interactions: macrophages and the host response to infection. Washington, DC): ASM Press; 2009. p 453–462.

Gluenz E, Höög JL, Smith AE, et al. Beyond 9+0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB J: off Publ Fed Am Soc Exp Biol. 2010;24(9):3117–3121. doi: 10.1096/fj.09-151381 PubMed DOI PMC

Gluenz E, Ginger ML, McKean PG. Flagellum assembly and function during the PubMed DOI

Tran KD, Rodriguez-Contreras D, Vieira DP, et al. KHARON1 mediates flagellar targeting of a glucose transporter in PubMed DOI PMC

Garami A, Ilg T. Disruption of mannose activation in PubMed DOI PMC

Ralston KS, Lerner AG, Diener DR, et al. Flagellar motility contributes to cytokinesis in PubMed DOI PMC

Alexander J. Unusual axonemal doublet arrangements in the flagellum of PubMed DOI

Won MM, Kruger T, Engstler M, et al. The intracellular amastigote of PubMed DOI PMC

Alves AA, Bastin P, Tschudi C. The hows and whys of amastigote flagellum motility in PubMed DOI PMC

Alsford S, Turner DJ, Obado SO, et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 2011;21(6):915–924. doi: 10.1101/gr.115089.110 PubMed DOI PMC

Wheeler RJ, Sunter JD, Gull K. Flagellar pocket restructuring through the PubMed DOI PMC

Sunter JD, Yanase R, Wang Z, et al. PubMed DOI PMC

Adhiambo C, Forney JD, Asai DJ, et al. The two cytoplasmic dynein-2 isoforms in PubMed DOI

Zauli RC, Yokoyama-Yasunaka JK, Miguel DC, et al. A dysflagellar mutant of PubMed DOI PMC

Nachury MV, Mick DU. Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol. 2019;20(7):389–405. doi: 10.1038/s41580-019-0116-4 PubMed DOI PMC

Hodges ME, Scheumann N, Wickstead B, et al. Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci. 2010;123(Pt 9):1407–1413. doi: 10.1242/jcs.064873 PubMed DOI PMC

Ewerling A, Maissl V, Wickstead B, et al. Neofunctionalization of ciliary BBS proteins to nuclear roles is likely a frequent innovation across eukaryotes. iScience. 2023;26(4):106410. doi: 10.1016/j.isci.2023.106410 PubMed DOI PMC

Valentine MS, Rajendran A, Yano J, et al. Paramecium BBS genes are key to presence of channels in Cilia. Cilia. 2012;1(1):16. doi: 10.1186/2046-2530-1-16 PubMed DOI PMC

Lechtreck KF, Johnson EC, Sakai T, et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol. 2009;187(7):1117–1132. doi: 10.1083/jcb.200909183 PubMed DOI PMC

Berbari NF, Lewis JS, Bishop GA, et al. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA. 2008;105(11):4242–4246. doi: 10.1073/pnas.0711027105 PubMed DOI PMC

Domire JS, Green JA, Lee KG, et al. Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell Mol Life Sci. 2011;68(17):2951–2960. doi: 10.1007/s00018-010-0603-4 PubMed DOI PMC

Datta P, Allamargot C, Hudson JS, et al. Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet-Biedl syndrome. Proc Natl Acad Sci USA. 2015;112(32):E4400–4409. doi: 10.1073/pnas.1510111112 PubMed DOI PMC

Langousis G, Shimogawa MM, Saada EA, et al. Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei. Proc Natl Acad Sci USA. 2016;113(3):632–637. doi: 10.1073/pnas.1518079113 PubMed DOI PMC

Dean S, Moreira-Leite F, Varga V, et al. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proc Natl Acad Sci USA. 2016;113(35):E5135–5143. doi: 10.1073/pnas.1604258113 PubMed DOI PMC

Yuan X, Kadowaki T, Byun AS. Protein subcellular relocalization and function of duplicated flagellar calcium binding protein genes in honey bee trypanosomatid parasite. PLOS Genet. 2024;20(3):e1011195. doi: 10.1371/journal.pgen.1011195 PubMed DOI PMC

Price HP, Hodgkinson MR, Wright MH, et al. A role for the vesicle-associated tubulin binding protein ARL6 (BBS3) in flagellum extension in PubMed DOI PMC

Price HP, Paape D, Hodgkinson MR, et al. The PubMed DOI PMC

Beneke T, Dobramysl U, Catta-Preta CMC, et al. Genome sequence of PubMed DOI PMC

Fiebig M, Kelly S, Gluenz E, et al. Comparative lifecycle transcriptomics revises PubMed DOI PMC

Rotureau B, Gego A, Carme B. Trypanosomatid protozoa: a simplified DNA isolation procedure. Exp Parasitol. 2005;111(3):207–209. doi: 10.1016/j.exppara.2005.07.003 PubMed DOI

Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–1291. doi: 10.1093/bioinformatics/btm091 PubMed DOI

Untergasser A, Cutcutache I, Koressaar T, et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi: 10.1093/nar/gks596 PubMed DOI PMC

Castanys-Muñoz E, Brown E, Coombs GH, et al. Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis. 2012;3(9):e385. doi: 10.1038/cddis.2012.113 PubMed DOI PMC

Beneke T, Gluenz E. Bar-seq strategies for the LeishGEdit toolbox. Mol Biochem Parasitol. 2020;239:111295. doi: 10.1016/j.molbiopara.2020.111295 PubMed DOI

Beneke T, Neish R, Catta-Preta CM, et al. IFT and BBSome proteins are required for

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...