Leishmania mexicana pathogenicity requires flagellar assembly but not motility
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
40602995
PubMed Central
PMC12233823
DOI
10.1080/21505594.2025.2521478
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR screen, Leishmania, flagella, motility, virulence,
- MeSH
- flagella * fyziologie genetika metabolismus MeSH
- Leishmania mexicana * patogenita genetika fyziologie MeSH
- makrofágy parazitologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- protozoální proteiny genetika metabolismus MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální proteiny MeSH
Protists of the order Trypanosomatida possess a single multifunctional flagellum, which powers cellular displacement and mediates attachment to tissues of the arthropod vector. The kinetoplastid flagellar cytoskeleton consists of a nine-microtubule doublet axoneme; further structural elaborations, which can vary between species and life cycle stages, include the assembly of axonemal dynein complexes, a pair of singlet microtubules and the extra-axonemal paraflagellar rod. The intracellular amastigote forms of Leishmania spp. build a short, non-motile cilium whose function has remained enigmatic. Here, we used a panel of 25 barcoded promastigote cell lines, including mutants lacking genes encoding flagellar assembly proteins, axonemal proteins required for normal motility, or flagellar membrane proteins to examine how these defects impact on their virulence in macrophages and mice. Mutants lacking the intraflagellar transport (IFT) protein 88 were avirulent indicating that assembly of a flagellum is necessary to allow for Leishmania survival in a mammalian host. A similarly severe loss of virulence was observed upon deletion of BBS2, a core component of the BBSome complex, which may act as a cargo adapter for IFT. By contrast, promastigotes that were unable to beat their flagella due to loss of core axonemal proteins could establish and sustain an infection and only showed a small reduction of parasite burden in vivo compared to the parental cell lines. These results confirm that flagellar motility is not necessary for mammalian infection, but flagellum assembly and the integrity of the BBSome are essential for pathogenicity.
Department of Biomedical Sciences Institute of Tropical Medicine Antwerp Belgium
Department of Cell and Developmental Biology Biocentre University of Würzburg Würzburg Germany
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Harry Perkins Institute of Medical Research Perth Australia
Institute of Cell Biology University of Bern Bern Switzerland
Parasite Chemotherapy Unit Swiss Tropical and Public Health Institute Allschwil Switzerland
School of Infection and Immunity University of Glasgow Glasgow UK
Sir William Dunn School of Pathology University of Oxford Oxford UK
York Biomedical Research Institute Department of Biology University of York York UK
Zobrazit více v PubMed
Rao SPS, Barrett MP, Dranoff G, et al. Drug discovery for kinetoplastid Diseases: future directions. ACS Infect Dis. 2019;5(2):152–13. doi: 10.1021/acsinfecdis.8b00298 PubMed DOI
Saez Conde J, Dean S.. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol. 2022;237(6):2654–2667. doi: 10.1002/jcp.30778 PubMed DOI PMC
Absalon S, Blisnick T, Kohl L, et al. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell. 2008;19(3):929–944. doi: 10.1091/mbc.e07-08-0749 PubMed DOI PMC
Taschner M, Lorentzen E. The intraflagellar transport machinery. Cold Spring Harb Perspect Biol. 2016;8(10):a028092. doi: 10.1101/cshperspect.a028092 PubMed DOI PMC
van Dam TJ, Townsend MJ, Turk M, et al. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc Natl Acad Sci USA. 2013;110(17):6943–6948. doi: 10.1073/pnas.1221011110 PubMed DOI PMC
Wingfield JL, Lechtreck KF, Lorentzen E, et al. Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem. 2018;62(6):753–763. doi: 10.1042/EBC20180030 PubMed DOI PMC
Vasquez SSV, van Dam J, Wheway G, et al. An updated SYSCILIA gold standard (SCGSv2) of known ciliary genes, revealing the vast progress that has been made in the cilia research field. Mol Biol Cell. 2021;32(22):br13. doi: 10.1091/mbc.E21-05-0226 PubMed DOI PMC
Broadhead R, Dawe HR, Farr H, et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature. 2006;440(7081):224–227. doi: 10.1038/nature04541 PubMed DOI
Subota I, Julkowska D, Vincensini L, et al. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol Cell Proteomics. 2014;13(7):1769–1786. doi: 10.1074/mcp.M113.033357 PubMed DOI PMC
van Dam TJ, Wheway G, Slaats GG, et al. The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia. 2013;2(1):7. doi: 10.1186/2046-2530-2-7 PubMed DOI PMC
Oberholzer M, Langousis G, Nguyen HT, et al. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious PubMed DOI PMC
Beneke T, Demay F, Hookway E, et al. Genetic dissection of a PubMed DOI PMC
Kohl L, Robinson D, Bastin P. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. Embo J. 2003;22(20):5336–5346. doi: 10.1093/emboj/cdg518 PubMed DOI PMC
Sunter J, Gull K. The flagellum attachment zone: ‘the cellular ruler’ of trypanosome morphology. Trends Parasitol. 2016;32:309–324. doi: 10.1016/j.pt.2015.12.010 PubMed DOI PMC
Sunter JD, Varga V, Dean S, et al. A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes. J Cell Sci. 2015;128(8):1580–1594. doi: 10.1242/jcs.166447 PubMed DOI PMC
Ralston KS, Hill KL, Burleigh BA. TrypanTrypanIn, a component of the flagellar dynein regulatory complex, is essential in bloodstream form African trypanosomes. PLOS Pathog. 2006;2(9):e101. doi: 10.1371/journal.ppat.0020101 PubMed DOI PMC
Griffiths S, Portman N, Taylor PR, et al. RNA interference mutant induction in vivo demonstrates the essential nature of trypanosome flagellar function during mammalian infection. Eukaryot Cell. 2007;6(7):1248–1250. doi: 10.1128/EC.00110-07 PubMed DOI PMC
Shimogawa MM, Ray SS, Kisalu N, et al. Parasite motility is critical for virulence of African trypanosomes. Sci Rep. 2018;8(1):9122. doi: 10.1038/s41598-018-27228-0 PubMed DOI PMC
Branche C, Kohl L, Toutirais G, et al. Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci. 2006;119(Pt 16):3443–3455. doi: 10.1242/jcs.03078 PubMed DOI
Rotureau B, Ooi CP, Huet D, et al. Forward motility is essential for trypanosome infection in the tsetse fly. Cell Microbiol. 2014;16(3):425–433. doi: 10.1111/cmi.12230 PubMed DOI
Sunter JD, Moreira-Leite F, Gull K. Dependency relationships between IFT-dependent flagellum elongation and cell morphogenesis in PubMed DOI PMC
Beneke T, Madden R, Makin L, et al. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci. 2017;4(5):170095. doi: 10.1098/rsos.170095 PubMed DOI PMC
Dobrowolski JM, Sibley LD. PubMed DOI
Frenal K, Dubremetz JF, Lebrun M, et al. Gliding motility powers invasion and egress in Apicomplexa. Nat Rev Microbiol. 2017;15(11):645–660. doi: 10.1038/nrmicro.2017.86 PubMed DOI
Walker DM, Oghumu S, Gupta G, et al. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci. 2014;71(7):1245–1263. doi: 10.1007/s00018-013-1491-1 PubMed DOI PMC
Zenian A, Rowles P, Gingell D. Scanning electron-microscopic study of the uptake of PubMed DOI
Forestier CL, Machu C, Loussert C, et al. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host & Microbe. 2011;9(4):319–330. doi: 10.1016/j.chom.2011.03.011 PubMed DOI
Courret N, Fréhel C, Gouhier N, et al. Biogenesis of PubMed DOI
Pearson RD, Sullivan JA, Roberts D, et al. Interaction of PubMed DOI PMC
Rittig MG, Schröppel K, Seack K-H, et al. Coiling phagocytosis of trypanosomatids and fungal cells. Infect Immun. 1998;66(9):4331–4339. doi: 10.1128/IAI.66.9.4331-4339.1998 PubMed DOI PMC
Findlay RC, Osman M, Spence KA, et al. High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective PubMed DOI PMC
Cuvillier A, Redon F, Antoine J-C, et al. LdARL-3A, a PubMed DOI
Cuvillier A, Miranda JC, Ambit A, et al. Abortive infection of PubMed DOI
Harder S, Thiel M, Clos J, et al. Characterization of a subunit of the outer dynein arm docking complex necessary for correct flagellar assembly in PubMed DOI PMC
Peters NC, Egen JG, Secundino N, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891):970–974. doi: 10.1126/science.1159194 PubMed DOI PMC
Wheeler RJ, Gluenz E, Gull K. Routes to a 9+0 flagellum: basal body multipotency and axonemal plasticity. Nat Commun. 2015;6(1):8964. doi: 10.1038/ncomms9964 PubMed DOI PMC
Gull K. The parasite point of view: insights and questions on the cell biology of Trypanosoma and Leishmania parasite-phagocyte interactions. In: Russell D, Gordon S, editors. Phagocyte-pathogen interactions: macrophages and the host response to infection. Washington, DC): ASM Press; 2009. p 453–462.
Gluenz E, Höög JL, Smith AE, et al. Beyond 9+0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB J: off Publ Fed Am Soc Exp Biol. 2010;24(9):3117–3121. doi: 10.1096/fj.09-151381 PubMed DOI PMC
Gluenz E, Ginger ML, McKean PG. Flagellum assembly and function during the PubMed DOI
Tran KD, Rodriguez-Contreras D, Vieira DP, et al. KHARON1 mediates flagellar targeting of a glucose transporter in PubMed DOI PMC
Garami A, Ilg T. Disruption of mannose activation in PubMed DOI PMC
Ralston KS, Lerner AG, Diener DR, et al. Flagellar motility contributes to cytokinesis in PubMed DOI PMC
Alexander J. Unusual axonemal doublet arrangements in the flagellum of PubMed DOI
Won MM, Kruger T, Engstler M, et al. The intracellular amastigote of PubMed DOI PMC
Alves AA, Bastin P, Tschudi C. The hows and whys of amastigote flagellum motility in PubMed DOI PMC
Alsford S, Turner DJ, Obado SO, et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 2011;21(6):915–924. doi: 10.1101/gr.115089.110 PubMed DOI PMC
Wheeler RJ, Sunter JD, Gull K. Flagellar pocket restructuring through the PubMed DOI PMC
Sunter JD, Yanase R, Wang Z, et al. PubMed DOI PMC
Adhiambo C, Forney JD, Asai DJ, et al. The two cytoplasmic dynein-2 isoforms in PubMed DOI
Zauli RC, Yokoyama-Yasunaka JK, Miguel DC, et al. A dysflagellar mutant of PubMed DOI PMC
Nachury MV, Mick DU. Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol. 2019;20(7):389–405. doi: 10.1038/s41580-019-0116-4 PubMed DOI PMC
Hodges ME, Scheumann N, Wickstead B, et al. Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci. 2010;123(Pt 9):1407–1413. doi: 10.1242/jcs.064873 PubMed DOI PMC
Ewerling A, Maissl V, Wickstead B, et al. Neofunctionalization of ciliary BBS proteins to nuclear roles is likely a frequent innovation across eukaryotes. iScience. 2023;26(4):106410. doi: 10.1016/j.isci.2023.106410 PubMed DOI PMC
Valentine MS, Rajendran A, Yano J, et al. Paramecium BBS genes are key to presence of channels in Cilia. Cilia. 2012;1(1):16. doi: 10.1186/2046-2530-1-16 PubMed DOI PMC
Lechtreck KF, Johnson EC, Sakai T, et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol. 2009;187(7):1117–1132. doi: 10.1083/jcb.200909183 PubMed DOI PMC
Berbari NF, Lewis JS, Bishop GA, et al. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA. 2008;105(11):4242–4246. doi: 10.1073/pnas.0711027105 PubMed DOI PMC
Domire JS, Green JA, Lee KG, et al. Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell Mol Life Sci. 2011;68(17):2951–2960. doi: 10.1007/s00018-010-0603-4 PubMed DOI PMC
Datta P, Allamargot C, Hudson JS, et al. Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet-Biedl syndrome. Proc Natl Acad Sci USA. 2015;112(32):E4400–4409. doi: 10.1073/pnas.1510111112 PubMed DOI PMC
Langousis G, Shimogawa MM, Saada EA, et al. Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei. Proc Natl Acad Sci USA. 2016;113(3):632–637. doi: 10.1073/pnas.1518079113 PubMed DOI PMC
Dean S, Moreira-Leite F, Varga V, et al. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proc Natl Acad Sci USA. 2016;113(35):E5135–5143. doi: 10.1073/pnas.1604258113 PubMed DOI PMC
Yuan X, Kadowaki T, Byun AS. Protein subcellular relocalization and function of duplicated flagellar calcium binding protein genes in honey bee trypanosomatid parasite. PLOS Genet. 2024;20(3):e1011195. doi: 10.1371/journal.pgen.1011195 PubMed DOI PMC
Price HP, Hodgkinson MR, Wright MH, et al. A role for the vesicle-associated tubulin binding protein ARL6 (BBS3) in flagellum extension in PubMed DOI PMC
Price HP, Paape D, Hodgkinson MR, et al. The PubMed DOI PMC
Beneke T, Dobramysl U, Catta-Preta CMC, et al. Genome sequence of PubMed DOI PMC
Fiebig M, Kelly S, Gluenz E, et al. Comparative lifecycle transcriptomics revises PubMed DOI PMC
Rotureau B, Gego A, Carme B. Trypanosomatid protozoa: a simplified DNA isolation procedure. Exp Parasitol. 2005;111(3):207–209. doi: 10.1016/j.exppara.2005.07.003 PubMed DOI
Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–1291. doi: 10.1093/bioinformatics/btm091 PubMed DOI
Untergasser A, Cutcutache I, Koressaar T, et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi: 10.1093/nar/gks596 PubMed DOI PMC
Castanys-Muñoz E, Brown E, Coombs GH, et al. Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis. 2012;3(9):e385. doi: 10.1038/cddis.2012.113 PubMed DOI PMC
Beneke T, Gluenz E. Bar-seq strategies for the LeishGEdit toolbox. Mol Biochem Parasitol. 2020;239:111295. doi: 10.1016/j.molbiopara.2020.111295 PubMed DOI
Beneke T, Neish R, Catta-Preta CM, et al. IFT and BBSome proteins are required for