Introduction: This study proposes an algorithm for preprocessing VCG records to obtain a representative QRS loop. Methods: The proposed algorithm uses the following methods: Digital filtering to remove noise from the signal, wavelet-based detection of ECG fiducial points and isoelectric PQ intervals, spatial alignment of QRS loops, QRS time synchronization using root mean square error minimization and ectopic QRS elimination. The representative QRS loop is calculated as the average of all QRS loops in the VCG record. The algorithm is evaluated on 161 VCG records from a database of 58 healthy control subjects, 69 patients with myocardial infarction, and 34 patients with bundle branch block. The morphologic intra-individual beat-to-beat variability rate is calculated for each VCG record. Results and Discussion: The maximum relative deviation is 12.2% for healthy control subjects, 19.3% for patients with myocardial infarction, and 17.2% for patients with bundle branch block. The performance of the algorithm is assessed by measuring the morphologic variability before and after QRS time synchronization and ectopic QRS elimination. The variability is reduced by a factor of 0.36 for healthy control subjects, 0.38 for patients with myocardial infarction, and 0.41 for patients with bundle branch block. The proposed algorithm can be used to generate a representative QRS loop for each VCG record. This representative QRS loop can be used to visualize, compare, and further process VCG records for automatic VCG record classification.
- Publikační typ
- časopisecké články MeSH
This article presents an overview of existing approaches to perform vectorcardiographic (VCG) diagnostics of ischemic heart disease (IHD). Individual methodologies are divided into categories to create a comprehensive and clear overview of electrical cardiac activity measurement, signal pre-processing, features extraction and classification procedures. An emphasis is placed on methods describing the electrical heart space (EHS) by several features extraction techniques based on spatiotemporal characteristics or signal modelling and signal transformations. Performance of individual methodologies are compared depending on classification of extent of ischemia, acute forms - myocardial infarction (MI) and myocardial scars localization. Based on a comparison of imaging methods, the advantages of VCG over the standard 12-leads ECG such as providing a 3D orthogonal leads imaging, better performance, and appropriate computer processing are highlighted. The issues of electrical cardiac activity measurements on body surface, the lack of VKG databases supported by a more accurate imaging method, possibility of comparison with the physiology of individual cases are outlined as potential reserves for future research.
- MeSH
- elektrokardiografie metody MeSH
- infarkt myokardu * MeSH
- lidé MeSH
- myokard MeSH
- počítačové zpracování signálu MeSH
- srdce fyziologie MeSH
- vektorkardiografie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper presents a newly-designed and realized Invasive Blood Pressure (IBP) device for the simulation on patient's monitors. This device shows improvements and presents extended features with respect to a first prototype presented by the authors and similar systems available in the state-of-the-art. A peculiarity of the presented device is that all implemented features can be customized from the developer and from the point of view of the end user. The realized device has been tested, and its performances in terms of accuracy and of the back-loop measurement of the output for the blood pressure regulation utilization have been described. In particular, an accuracy of ±1 mmHg at 25 °C, on a range from -30 to 300 mmHg, was evaluated under different test conditions. The designed device is an ideal tool for testing IBP modules, for zero setting, and for calibrations. The implemented extended features, like the generation of custom waveforms and the Universal Serial Bus (USB) connectivity, allow use of this device in a wide range of applications, from research to equipment maintenance in clinical environments to educational purposes. Moreover, the presented device represents an innovation, both in terms of technology and methodologies: It allows quick and efficient tests to verify the proper functioning of IBP module of patients' monitors. With this innovative device, tests can be performed directly in the field and faster procedures can be implemented by the clinical maintenance personnel. This device is an open source project and all materials, hardware, and software are fully available for interested developers or researchers.
- MeSH
- design vybavení MeSH
- kalibrace MeSH
- krevní tlak fyziologie MeSH
- lidé MeSH
- měření krevního tlaku přístrojové vybavení metody MeSH
- monitorování fyziologických funkcí přístrojové vybavení metody MeSH
- monitory krevního tlaku * MeSH
- software MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH