Synovial fluid (SF)-derived monocyte-macrophage (MON-Mφ)-lineage cells in knee osteoarthritis (KOA) remain poorly understood. We analyzed SF samples from 420 patients with KOA with effusion. The MON-Mφ cells accounted for 47.4% (median; range 7.1%-94.4%) of CD45+ cells and consisted of four subpopulations that correlated with the distribution and activation of other immune cells. The most abundant subpopulation was that of inactive CD11b+CD14-CD16- myeloid dendritic cells (mDCs; cDC2), which exhibited low cytokine production, low T lymphocyte stimulation, and high migratory ability. Other major subpopulations included CD11b+CD14+CD16- monocyte-like cells and CD11b+CD14+CD16+ macrophages, which share a similar transcriptomic profile. A subpopulation of CD11b-CD14-CD16- mDCs (cDC1) was less common. A higher proportion of CD11b+CD14-CD16- mDCs was linked to early-stage KOA and mild joint pain. Dendritic cells were rarely present in KOA synovium. This study revealed the considerable complexity of SF-derived MON-Mφ subpopulations and highlighted the role of inactive mDCs in KOA.
- MeSH
- artróza kolenních kloubů * patologie metabolismus imunologie MeSH
- buněčný rodokmen MeSH
- dendritické buňky * metabolismus imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy * metabolismus imunologie MeSH
- monocyty * metabolismus imunologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- synoviální tekutina * metabolismus imunologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Non-small cell lung cancer (NSCLC) is largely promoted by a multistep tumorigenesis process involving various genetic and epigenetic alterations, which essentially contribute to the high incidence of mortality among patients with NSCLC. Clinical observations revealed that NSCLC also co-opts a multifaceted immune checkpoint dysregulation as an important driving factor in NSCLC progression and development. For example, a deregulated PI3K/AKT/mTOR pathway has been noticed in 50-70% of NSCLC cases, primarily modulated by mutations in key oncogenes such as ALK, EGFR, KRAS, and others. Additionally, genetic association studies containing patient-specific factors and local reimbursement criteria expose/reveal mutations in EGFR/ALK/ROS/BRAF/KRAS/PD-L1 proteins to determine the suitability of available immunotherapy or tyrosine kinase inhibitor therapy. Thus, the expression of such checkpoints on tumors and immune cells is pivotal in understanding the therapeutic efficacy and has been extensively studied for NSCLC treatments. Therefore, this review summarizes current knowledge in NSCLC tumorigenesis, focusing on its genetic and epigenetic intricacies, immune checkpoint dysregulation, and the evolving landscape of targeted therapies. In the context of current and future therapies, we emphasize the significance of antibodies targeting PD-1/PD-L1 and CTLA-4 interactions as the primary therapeutic strategy for immune system reactivation in NSCLC. Other approaches involving the promising potential of nanobodies, probodies, affibodies, and DARPINs targeting immune checkpoints are also described; these are under active research or clinical trials to mediate immune regulation and reduce cancer progression. This comprehensive review underscores the multifaceted nature, current state and future directions of NSCLC research and treatment.
- MeSH
- antigeny CD274 metabolismus MeSH
- erbB receptory metabolismus MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- karcinogeneze MeSH
- lidé MeSH
- nádorová transformace buněk MeSH
- nádory plic * farmakoterapie genetika MeSH
- nemalobuněčný karcinom plic * farmakoterapie genetika MeSH
- protoonkogenní proteiny p21(ras) MeSH
- tyrosinkinasové receptory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Lung cancer is one of the leading causes of cancer-related deaths worldwide, with small cell lung cancer (SCLC) having the worst prognosis. SCLC is diagnosed late in the disease's progression, limiting treatment options. The most common treatment for SCLC is chemotherapy. As the disease progresses, immunotherapy, most commonly checkpoint inhibitor medication, becomes more important. Efforts should be made in the development of immunotherapy to map specific biomarkers, which play a role in properly assigning a type of immunotherapy to the right cohort of patients, where the benefits outweigh any risks or adverse effects. The objective of this review was to provide a thorough assessment of current knowledge about the nature of the tumor process and treatment options for small cell lung cancer, with a focus on predictive biomarkers. According to the information obtained, the greatest potential, which has already been directly demonstrated in some studies, has characteristics such as tumor microenvironment composition, tumor mutation burden, and molecular subtyping of SCLC. Several other aspects appear to be promising, but more research, particularly prospective studies on a larger number of probands, is required. However, it is clear that this field of study will continue to expand, as developing a reliable method to predict immunotherapy response is a very appealing goal of current medicine and research in the field of targeted cancer therapy.