Plant secondary metabolism evolved in the context of highly organized and differentiated cells and tissues, featuring massive chemical complexity operating under tight environmental, developmental and genetic control. Biotechnological demand for natural products has been continuously increasing because of their significant value and new applications, mainly as pharmaceuticals. Aseptic production systems of plant secondary metabolites have improved considerably, constituting an attractive tool for increased, stable and large-scale supply of valuable molecules. Surprisingly, to date, only a few examples including taxol, shikonin, berberine and artemisinin have emerged as success cases of commercial production using this strategy. The present review focuses on the main characteristics of plant specialized metabolism and their implications for current strategies used to produce secondary compounds in axenic cultivation systems. The search for consonance between plant secondary metabolism unique features and various in vitro culture systems, including cell, tissue, organ, and engineered cultures, as well as heterologous expression in microbial platforms, is discussed. Data to date strongly suggest that attaining full potential of these biotechnology production strategies requires being able to take advantage of plant specialized metabolism singularities for improved target molecule yields and for bypassing inherent difficulties in its rational manipulation.
- MeSH
- artemisininy izolace a purifikace metabolismus MeSH
- axenická kultura MeSH
- berberin izolace a purifikace metabolismus MeSH
- biologické přípravky izolace a purifikace metabolismus MeSH
- biotechnologie metody MeSH
- buněčné kultury MeSH
- fytonutrienty biosyntéza izolace a purifikace MeSH
- metabolické inženýrství metody MeSH
- naftochinony izolace a purifikace metabolismus MeSH
- paclitaxel biosyntéza izolace a purifikace MeSH
- rostlinné buňky chemie metabolismus MeSH
- rostliny chemie genetika metabolismus MeSH
- sekundární metabolismus MeSH
- techniky tkáňových kultur MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Shikonins are commercially important secondary compounds, known for array of biological activities such as antimicrobial, insecticidal, antitumor, antioxidants, etc. These compounds are usually colored and therefore have application in food, textiles and cosmetics. Shikonin and its derivatives, which are commercially most important of the naphthoquinone pigments, are distributed among members of the family Boraginaceae. These include different species of Lithospermum, Arnebia, Alkanna, Anchusa, Echium and Onosma. The growing demand for plant-based natural products has made this group of compounds one of the enthralling targets for their in vitro production. The aim of this review is to highlight the recent progress in production of shikonins by various biotechnological means. Different methods of increasing the levels of shikonins in plant cells such as selection of cell lines, optimization of culture conditions, elicitation, in situ product removal, genetic transformation and metabolic engineering are discussed. The experience of different researchers working worldwide on this aspect is also considered. Further, to meet market demand, the needs for continuous and reliable production systems, as well as future prospects, are included.