Detailed knowledge of human B-cell development is crucial for the proper interpretation of inborn errors of immunity and malignant diseases. It is of interest to understand the kinetics of protein expression changes during development, but also to properly interpret the major and possibly alternative developmental trajectories. We have investigated human samples from healthy individuals with the aim of describing all B-cell developmental trajectories. We validated a 30-parameter mass cytometry panel and demonstrated the utility of "vaevictis" visualization of B-cell developmental stages. We used the trajectory inference tool "tviblindi" to exhaustively describe all trajectories leading to all developmental ends discovered in the data. Focusing on Natural Effector B cells, we demonstrated the dynamics of expression of nuclear factors (PAX-5, TdT, Ki-67, Bcl-2), cytokine and chemokine receptors (CD127, CXCR4, CXCR5) in relation to the canonical B-cell developmental stage markers. We observed branching of the memory development, where follicular memory formation was marked by CD73 expression. Lastly, we performed an analysis of two example cases of abnormal B-cell development caused by mutations in RAG-1 and Wiskott-Aldrich syndrome gene in patients with primary immunodeficiency. In conclusion, we developed, validated, and presented a comprehensive set of tools for the investigation of B-cell development in the bone marrow compartment.
- MeSH
- algoritmy * MeSH
- B-lymfocyty * imunologie MeSH
- buněčná diferenciace * imunologie genetika MeSH
- homeodoménové proteiny * genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVES: The mental health of healthcare workers (HCWs) may have improved after the COVID-19 pandemic. We aimed to model the trajectories of psychological distress, depressive symptoms, and resilience during the COVID-19 pandemic and toward its end in HCWs in Czechia and investigate, which COVID-19 work stressors were associated with these trajectories. METHODS: The study included 322 HCWs from the Czech arm of the international HEROES Study who participated in an online questionnaire in two waves during the pandemic and one wave toward its end. Growth mixture modeling identified trajectory patterns of depressive symptoms (measured with Patient Health Questionnaire), distress (General Health Questionnaire), and resilience (Brief Resilience Scale). Logistic regression was applied to estimate the association of COVID-19 stressors with mental health trajectories, adjusting for baseline characteristics. RESULTS: Trajectory classes revealed both high and low depressive symptoms (high in 61% of participants), distress (high in 82% of participants), and resilience (low in 32% of participants). Depressive symptoms and distress trajectories demonstrated the same shape, first increasing during the pandemic and decreasing toward its end, while resilience remained constant. Exposure to COVID-19 stressors, in particular, the experience of stigmatization, discrimination, and violence, was associated with high depressive symptoms and distress trajectories, but not with resilience. CONCLUSIONS: Interventions provided to HCWs during crises such as pandemic should target distress and depressive symptoms and need to address stigmatization, discrimination, and violence.
- MeSH
- COVID-19 * psychologie epidemiologie MeSH
- deprese * psychologie epidemiologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- pracovní stres psychologie epidemiologie MeSH
- průzkumy a dotazníky MeSH
- psychická odolnost * MeSH
- psychický distres MeSH
- psychický stres psychologie epidemiologie MeSH
- SARS-CoV-2 MeSH
- zdravotnický personál * psychologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
In recent years, there has been a growing interest in extending the potential of underground gas storage (UGS) facilities to hydrogen and carbon dioxide storage. However, this transition to hydrogen storage raises concerns regarding potential microbial reactions, which could convert hydrogen into methane. It is crucial to gain a comprehensive understanding of the microbial communities within any UGS facilities designated for hydrogen storage. In this study, underground water samples and water samples from surface technologies from 7 different UGS objects located in the Vienna Basin were studied using both molecular biology methods and cultivation methods. Results from 16S rRNA sequencing revealed that the proportion of archaea in the groundwater samples ranged from 20 to 58%, with methanogens being the predominant. Some water samples collected from surface technologies contained up to 87% of methanogens. Various species of methanogens were isolated from individual wells, including Methanobacterium sp., Methanocalculus sp., Methanolobus sp. or Methanosarcina sp. We also examined water samples for the presence of sulfate-reducing bacteria known to be involved in microbially induced corrosion and identified species of the genus Desulfovibrio in the samples. In the second part of our study, we contextualized our data by comparing it to available sequencing data from terrestrial subsurface environments worldwide. This allowed us to discern patterns and correlations between different types of underground samples based on environmental conditions. Our findings reveal presence of methanogens in all analyzed groups of underground samples, which suggests the possibility of unintended microbial hydrogen-to-methane conversion and the associated financial losses. Nevertheless, the prevalence of methanogens in our results also highlights the potential of the UGS environment, which can be effectively leveraged as a bioreactor for the conversion of hydrogen into methane, particularly in the context of Power-to-Methane technology.
- Publikační typ
- časopisecké články MeSH
The pandemic due to COVID-19 brought new risks for depression of health care workers, which may have differently influenced men and women. We aimed to investigate (1) whether health care workers in Czechia experienced an increase in depression during the COVID-19 pandemic, (2) which factors contributed the most to this change, and (3) whether the magnitude of the associations differed by gender. We studied 2564 participants of the Czech arm of the international COVID-19 HEalth caRe wOrkErS (HEROES) Study. Online questionnaire was administered to health care workers in summer 2020 (wave 0) and spring 2021 (wave 1). Depression was defined by reaching 10 or more points on the Patient Health Questionnaire. Logistic regression investigated the association of participant ́s characteristics with depression and multivariable decomposition for non-linear models assessed, to what extent the characteristic explained the change in depression occurrence. The prevalence of depression increased twice during the pandemic (11% in wave 0 and 22% in wave 1). Stress accounted for 50% of the difference, experience of death due to COVID-19 for 15% and contact with COVID-19 patients for 14%. Greater resilience and sufficient personal protective equipment were strongly associated with lower occurrence of depression. The protective association of resilience with depression was stronger in men than in women. We conclude that interventions to promote mental health of health care workers in future health crisis should aim at decreasing stress and enhancing resilience. They should be delivered especially to individuals who have contact with the affected patients and may face their death.
- MeSH
- COVID-19 * epidemiologie MeSH
- lidé MeSH
- pandemie MeSH
- plži * MeSH
- úzkost MeSH
- zdravotnický personál MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Immune checkpoint inhibitors (ICI) are the main therapy currently used in advanced malignant melanoma (MM) and non-small cell lung cancer (NSCLC). Despite the wide variety of uses, the possibility of predicting ICI efficacy in these tumor types is scarce. The aim of our study was to find new predictive biomarkers for ICI treatment. We analyzed, by immunohistochemistry, various cell subsets, including CD3+, CD8+, CD68+, CD20+, and FoxP3+ cells, and molecules such as LAG-3, IDO1, and TGFβ. Comprehensive genomic profiles were analyzed. We evaluated 46 patients with advanced MM (31) and NSCLC (15) treated with ICI monotherapy. When analyzing the malignant melanoma group, shorter median progression-free survival (PFS) was found in tumors positive for nuclear FoxP3 in tumor-infiltrating lymphocytes (TILs) (p = 0.048, HR 3.04) and for CD68 expression (p = 0.034, HR 3.2). Longer PFS was achieved in patients with tumors with PD-L1 TPS ≥ 1 (p = 0.005, HR 0.26). In the NSCLC group, only FoxP3 positivity was associated with shorter PFS and OS. We found that FoxP3 negativity was linked with a better response to ICI in both histological groups.
- Publikační typ
- časopisecké články MeSH
x
x
- MeSH
- kontrola potravin MeSH
- lidé MeSH
- potravní doplňky MeSH
- probiotika * MeSH
- Check Tag
- lidé MeSH
Lipid nitroalkenes - nitro-fatty acids (NO2-FAs) are formed in vivo via the interaction of reactive nitrogen species with unsaturated fatty acids. The resulting electrophilic NO2-FAs play an important role in redox homeostasis and cellular stress response. This study investigated the physicochemical properties and reactivity of two NO2-FAs: 9/10-nitrooleic acid (1) and its newly prepared 1-monoacyl ester, (E)-2,3-hydroxypropyl 9/10-nitrooctadec-9-enoate (2), both synthesized by a direct radical nitration approach. Compounds 1 and 2 were investigated in an aqueous medium and after incorporation into lipid nanoparticles prepared from 1-monoolein, cubosomes 1@CUB and 2@CUB. Using an electrochemical analysis and LC-MS, free 1 and 2 were found to be unstable under acidic conditions, and their degradation occurred in an aqueous environment within a few minutes or hours. This degradation was associated with the production of the NO radical, as confirmed by fluorescence assay. In contrast, preparations 1@CUB and 2@CUB exhibited a significant increase in the stability of the loaded 1 and 2 up to several days to weeks. In addition to experimental data, density functional theory-based calculation results on the electronic structure and structural variability (open and closed configuration) of 1 and 2 were obtained. Finally, experiments with a human HaCaT keratinocyte cell line demonstrated the ability of 1@CUB and 2@CUB to penetrate through the cytoplasmic membrane and modulate cellular pathways, which was exemplified by the Keap1 protein level monitoring. Free 1 and 2 and the cubosomes prepared from them showed cytotoxic effect on HaCaT cells with IC50 values ranging from 1 to 8 μM after 24 h. The further development of cubosomal preparations with embedded electrophilic NO2-FAs may not only contribute to the field of fundamental research, but also to their application using an optimized lipid delivery vehicle.
- MeSH
- dusíkaté sloučeniny MeSH
- faktor 2 související s NF-E2 MeSH
- KEAP-1 MeSH
- lidé MeSH
- mastné kyseliny * MeSH
- oxid dusnatý * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Covalent modifications of thiol and amine groups may control the function of proteins involved in the regulatory and signaling pathways of the cell. In this study, we developed a simple cysteamine assay which can be used to study the reactivity of electrophilic compounds towards primary amine and thiol groups in an aqueous environment. The detection principle is based on the electrochemical, photometrical and mass spectrometric analyses of cysteamine (2-aminoethanethiol) as the molecular probe. This technique is useful for studying the reaction kinetics of electrophiles with thiol (SH) and amino (NH2) groups. The decrease in analytical responses of cysteamine was monitored to evaluate the reactivity of three electrophilic activators of the Nrf2 pathway, which mediates the cellular stress response. The SH-reactivity under cell-free conditions of the tested electrophiles decreased in the following order: 4-hydroxy-2-nonenal ≥ nitro-oleic acid > sulforaphane. However, as shown in RAW264.7 cells, the tested compounds activated Nrf2-dependent gene expression in the opposite order: sulforaphane > nitro-oleic acid ≥ 4-hydroxy-2-nonenal. Although other factors in addition to chemical reactivity play a role in biological systems, we conclude that this cysteamine assay is a useful tool for screening potentially bioactive electrophiles and for studying their reactivity at a molecular level.
Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins.
The lipidic liquid-crystalline cubic phase (LCP) is a membrane-mimetic material useful for the stabilization and structural analysis of membrane proteins. Here, we focused on the incorporation of the membrane ATP-hydrolysing sodium/potassium transporter Na+/K+-ATPase (NKA) into a monoolein-derived LCP. Small-angle X-ray scattering was employed for the determination of the LCP structure, which was of Pn3m symmetry for all the formulations studied. The fully characterized NKA-LCP material was immobilized onto a glassy carbon electrode, forming a highly stable enzyme electrode and a novel sensing platform. A typical NKA voltammetric signature was monitored via the anodic reaction of tyrosine and tryptophan residues. The in situ enzyme activity evaluation was based on the ability of NKA to transform ATP to ADP and free phosphate, the latter reacting with ammonium molybdate to form the ammonium phosphomolybdate complex under acidic conditions. The square-wave voltammetric detection of phosphomolybdate was performed and complemented with spectrophotometric measurement at 710nm. The anodic voltammetric response, corresponding to the catalytic ATP-hydrolysing function of NKA incorporated into the LCP, was monitored at around + 0.2V vs. Ag/AgCl in the presence or absence of ouabain, a specific NKA inhibitor. NKA incorporated into the LCP retained its ATP-hydrolysing activity for 7 days, while the solubilized protein became practically inactive. The novelty of this work is the first incorporation of NKA into a lipidic cubic phase with consequent enzyme functionality and stability evaluation using voltammetric detection. The application of LCPs could also be important in the further development of new membrane protein electrochemical sensors and enzyme electrodes.
- MeSH
- adenosintrifosfát metabolismus MeSH
- biosenzitivní techniky metody MeSH
- enzymatické testy metody MeSH
- enzymy imobilizované chemie metabolismus MeSH
- glyceridy chemie MeSH
- hydrolýza MeSH
- kapalné krystaly chemie MeSH
- molekulární modely MeSH
- prasata MeSH
- sodíko-draslíková ATPasa chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH