The successional dental lamina (SDL) plays an essential role in the development of replacement teeth in diphyodont and polyphyodont animals. A morphologically similar structure, the rudimental successional dental lamina (RSDL), has been described in monophyodont (only one tooth generation) lizards on the lingual side of the developing functional tooth. This rudimentary lamina regresses, which has been proposed to play a role in preventing the formation of future generations of teeth. A similar rudimentary lingual structure has been reported associated with the first molar in the monophyodont mouse, and we show that this structure is common to all murine molars. Intriguingly, a lingual lamina is also observed on the non-replacing molars of other diphyodont mammals (pig and hedgehog), initially appearing very similar to the successional dental lamina on the replacing teeth. We have analyzed the morphological as well as ultrastructural changes that occur during the development and loss of this molar lamina in the mouse, from its initiation at late embryonic stages to its disappearance at postnatal stages. We show that loss appears to be driven by a reduction in cell proliferation, down-regulation of the progenitor marker Sox2, with only a small number of cells undergoing programmed cell death. The lingual lamina was associated with the dental stalk, a short epithelial connection between the tooth germ and the oral epithelium. The dental stalk remained in contact with the oral epithelium throughout tooth development up to eruption when connective tissue and numerous capillaries progressively invaded the dental stalk. The buccal side of the dental stalk underwent keratinisation and became part of the gingival epithelium, while most of the lingual cells underwent programmed cell death and the tissue directly above the erupting tooth was shed into the oral cavity.
- MeSH
- apoptóza fyziologie MeSH
- embryo savčí embryologie MeSH
- ježkovití MeSH
- moláry embryologie MeSH
- myši MeSH
- prasata MeSH
- transkripční faktory SOXB1 metabolismus MeSH
- ústní sliznice embryologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Antimicrobial-resistant Escherichia coli strains from pigs, sympatric rodents, and flies from two large farms in the Czech Republic with different antibiotic exposure histories were characterized based on antimicrobial resistance genes, integrons, and macrorestriction DNA profiles. Isolates of E. coli were tested for susceptibility to 12 antimicrobial agents according to the standard disk diffusion method. In resistant isolates, polymerase chain reaction was used to detect antibiotic resistance genes, integrase genes, and gene cassettes. Pulsed-field gel electrophoresis (PFGE) was used for molecular subtyping of E. coli. In farm A (long-term use of amoxicillin only), 75% (n = 198), 65% (n = 49), 11% (n = 139), and 82% (n = 177) of E. coli isolates from piglets, sows, sympatric rodents, and flies, respectively, were antibiotic resistant. In farm B (various antibiotics commonly used), 53% (n = 154), 69% (n = 98), and 54% (n = 74) of E. coli isolates from piglets, sows, and sympatric rodents, respectively, were antibiotic resistant. In both farms, the highest resistance prevalence was to tetracycline, and resistance patterns of isolates were greatly variable. Isolates with the same resistance phenotype, genes, and PFGE profile were found in pigs and flies. Isolates from rodents showed unique PFGE profiles. Close contact of sympatric rodents and flies with pigs or their products was associated with colonization of rodents and flies with resistant bacteria or transfer of resistance genes found in pig intestinal flora.
- MeSH
- antibakteriální látky farmakologie MeSH
- Arvicolinae mikrobiologie MeSH
- bakteriální léková rezistence genetika MeSH
- chov zvířat MeSH
- Diptera mikrobiologie MeSH
- Escherichia coli genetika izolace a purifikace klasifikace účinky léků MeSH
- hlodavci mikrobiologie MeSH
- integrasy genetika MeSH
- integrony genetika MeSH
- mikrobiální testy citlivosti MeSH
- myši MeSH
- prasata mikrobiologie MeSH
- pulzní gelová elektroforéza MeSH
- rejskovití mikrobiologie MeSH
- střeva mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH