Increasing data has confirmed the potential anticancer properties of Dendrobium, a traditional Chinese herb. However, most anticancer compositions from the plant of Dendrobium were usually extracted by high polar solvent, while weak polar compositions with excellent anticancer activity remained largely unexplored. In this study, the differences between ether extract and ethanol extract of Dendrobium nobile Lindl. on chemical components and anticancer activities were investigated, as well as the anticancer mechanisms among different extracts. The results demonstrated that the ether extract exhibited a stronger anticancer effect than ethanol extract, and its anticancer effect was mainly due to weak polar compounds rather than polysaccharides and alkaloids. Quantitative proteomics suggested that the ether extract significantly stimulated the over-expression of immature proteins, the endoplasmic reticulum stress and unfolded protein response were subsequently induced, the intracellular reactive oxygen species level was seriously elevated, and oxidative stress occurred in the meanwhile. Eventually, autophagy and apoptosis were activated to cause cell death. Our findings demonstrate that the ether extract of D. nobile is a potential candidate for anticancer drug development, and that future research on anticancer drugs derived from medicinal plants should also concentrate on weak polar compounds.
- MeSH
- anestezie a analgezie * dějiny MeSH
- chloroform dějiny MeSH
- cyklopropany dějiny MeSH
- ether dějiny MeSH
- kokain dějiny MeSH
- oxid dusný MeSH
- spinální anestezie dějiny MeSH
- Publikační typ
- zprávy MeSH
BACKGROUND AND AIMS: General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS: We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS: Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS: The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.
- MeSH
- anestezie * MeSH
- cyklopentany MeSH
- Droseraceae * MeSH
- ether MeSH
- oxylipiny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dietyléter a chloroform jsou nejstarší inhalační anestetika. Omamné účinky dietyléteru rozpoznal v roce 1540 jako první švýcarský lékař Paracelsus. Od první poloviny 19. století byl dietyléter používán k omámení při tzv. éterových party. Kromě inhalace byla látka užívána také perorálně. Účinky dietyléteru poprvé demonstrovali v říjnu 1846 v Bostonu zubní lékař Morton a chirurg Warren při veřejné operaci. Do nedávné doby byly velmi oblíbeny tzv. Hoffmanské kapky ‒ směs dietyléteru s alkoholem. Druhé inhalační anestetikum představoval chloroform, který je daleko účinnější než dietyléter. Do anestezie ho zavedl v roce 1837 porodník Simpson. První profesionální anesteziolog John Snow použil chloroform při porodu synů královny Viktorie a tím přispěl k jeho výrazné popularitě. Současně byl chloroform zneužíván ke kriminálním účelům ‒ k omámení a následnému okradení přepadených osob a rovněž jako tzv. date rape drug (droga používaná k sexuálnímu násilí). Dietyléter s chloroformem postupně upadly v zapomnění. Zejména chloroform vykazoval výrazné negativní působení v podobě vzniku komorové fibrilace a hepatotoxicity. U dietyléteru byly však zaznamenány také některé zajímavé účinky ‒ například analgetický, který se s výjimkou metoxyfluranu nevyskytuje u žádného inhalačního anestetika. Chemická struktura spolu s některými výhodnými účinky, jako je analgetický, tak mohou být vzorem při syntéze nových inhalačních anestetik.
Diethyl ether and chloroform are the oldest inhaled anesthetics. The intoxicating effects of diethyl ether were first recognized in 1540 by the Swiss physician Paracelsus. Since the first half of the nineteenth century, it has been used at so‑called “etheric parties” to achieve altered states of mind. Except for inhalation, it was also used orally. In October 1846, a dentist named Morton was the first to demonstrate the effects of diethyl ether during a surgery performed by Warren in Boston. Until recently, so‑called Hoffman drops, i.e. a mixture of diethyl ether and alcohol, were very popular. The second inhalation anesthetic was chloroform, which is far more effective than diethyl ether. The first professional anesthetist John Snow used it for the birth of two sons of Queen Victoria, contributing to its considerable popularity. At the same time, chloroform was abused for criminal purposes such as intoxicating and subsequently robbing the assailed person. It was also abused as a “date rape drug”. Both diethyl ether and chloroform gradually fell into oblivion. Particularly chloroform had significant negative effects ‒ ventricular fibrillation and hepatotoxicity. However, diethyl ether has some interesting effects as well, such as acting as an analgesic; this effect does not occur in any other inhaled anesthetic with the exception of methoxyflurane. The chemical structure together with its positive effects can thus be a model for the synthesis of new inhalation anesthetics.
- MeSH
- anestezie * dějiny metody trendy MeSH
- aplikace inhalační MeSH
- chloroform * dějiny chemie terapeutické užití MeSH
- dějiny 18. století MeSH
- dějiny 19. století MeSH
- dějiny lékařství MeSH
- ether * dějiny chemie terapeutické užití MeSH
- ethery dějiny chemie terapeutické užití MeSH
- lidé MeSH
- nežádoucí účinky léčiv MeSH
- poruchy spojené s užíváním psychoaktivních látek dějiny komplikace prevence a kontrola MeSH
- Check Tag
- dějiny 18. století MeSH
- dějiny 19. století MeSH
- lidé MeSH
- Publikační typ
- historické články MeSH
- přehledy MeSH
Background and Aims: Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans. Methods: A single-lens reflex camera was used to follow organ movements in plants before, during and after recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle trafficking. Electrical signals were recorded using a surface AgCl electrode. Key Results: Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, were also affected by all anaesthetics tested. Conclusions: Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia.
- MeSH
- akční potenciály účinky léků fyziologie MeSH
- anestetika škodlivé účinky MeSH
- Arabidopsis účinky léků fyziologie MeSH
- chlorofyl metabolismus MeSH
- Drosera účinky léků fyziologie MeSH
- Droseraceae účinky léků fyziologie MeSH
- ether škodlivé účinky MeSH
- homeostáza * MeSH
- hrách setý účinky léků fyziologie MeSH
- klíčení účinky léků MeSH
- Lepidium sativum účinky léků fyziologie MeSH
- listy rostlin účinky léků fyziologie MeSH
- Magnoliopsida účinky léků fyziologie MeSH
- Mimosa účinky léků fyziologie MeSH
- organely účinky léků fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- transportní vezikuly účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BF3·Et2O-catalyzed double aldol condensation between acetylated steroid sapogenins and terephtalaldehyde led to acetylated dimeric spirostanols linked through a 1,4-dimethylidenebenzene moiety in moderate to good yields. The E configurations of the introduced double bonds were corroborated by NOE experiments. Saponification of the dimeric steroids led to the corresponding dimeric spirostanols.
- MeSH
- aldehydy chemie MeSH
- benzen chemie MeSH
- borany chemie MeSH
- dimerizace * MeSH
- ether chemie MeSH
- katalýza MeSH
- kyseliny ftalové chemie MeSH
- sapogeniny chemie MeSH
- spirostany chemická syntéza chemie MeSH
- stereoizomerie MeSH
- techniky syntetické chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Analytical devices that combine sensitive biological component with a physicochemical detector hold a great potential for various applications, e.g., environmental monitoring, food analysis or medical diagnostics. Continuous efforts to develop inexpensive sensitive biodevices for detecting target substances typically focus on the design of biorecognition elements and their physical implementation, while the methods for processing signals generated by such devices have received far less attention. Here, we present fundamental considerations related to signal processing in biosensor design and investigate how undemanding signal treatment facilitates calibration and operation of enzyme-based biodevices. Our signal treatment approach was thoroughly validated with two model systems: (i) a biodevice for detecting chemical warfare agents and environmental pollutants based on the activity of haloalkane dehalogenase, with the sensitive range for bis(2-chloroethyl) ether of 0.01-0.8 mM and (ii) a biodevice for detecting hazardous pesticides based on the activity of γ-hexachlorocyclohexane dehydrochlorinase with the sensitive range for γ-hexachlorocyclohexane of 0.01-0.3 mM. We demonstrate that the advanced signal processing based on curve fitting enables precise quantification of parameters important for sensitive operation of enzyme-based biodevices, including: (i) automated exclusion of signal regions with substantial noise, (ii) derivation of calibration curves with significantly reduced error, (iii) shortening of the detection time, and (iv) reliable extrapolation of the signal to the initial conditions. The presented simple signal curve fitting supports rational design of optimal system setup by explicit and flexible quantification of its properties and will find a broad use in the development of sensitive and robust biodevices.
- MeSH
- biosenzitivní techniky metody MeSH
- chemické bojové látky analýza MeSH
- chlorované uhlovodíky analýza MeSH
- enzymy metabolismus MeSH
- ether analogy a deriváty analýza MeSH
- hexany analýza MeSH
- hydrolasy metabolismus MeSH
- kalibrace MeSH
- látky znečišťující životní prostředí analýza MeSH
- lyasy metabolismus MeSH
- počítačové zpracování signálu * MeSH
- senzitivita a specificita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Klíčová slova
- éter,
- MeSH
- anestetika inhalační * dějiny terapeutické užití MeSH
- chloroform dějiny toxicita MeSH
- dějiny 19. století MeSH
- ether dějiny terapeutické užití MeSH
- inhalační anestezie * dějiny MeSH
- lidé MeSH
- významné osobnosti MeSH
- Check Tag
- dějiny 19. století MeSH
- lidé MeSH
- Publikační typ
- historické články MeSH
- MeSH
- anesteziologie dějiny MeSH
- celková anestezie dějiny metody MeSH
- dějiny lékařství MeSH
- ether terapeutické užití MeSH
- Publikační typ
- biografie MeSH
- novinové články MeSH
- O autorovi
- Opitz, František Celestýn, 1810-1866 Autorita