MEDNIK syndrome is a rare autosomal recessive disease characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma, and caused by variants in the adaptor-related protein complex 1 subunit sigma 1 (AP1S1) gene. This gene encodes the σ1A protein, which is a subunit of the adaptor protein complex 1 (AP-1), a key component of the intracellular protein trafficking machinery. Previous work identified three AP1S1 nonsense, frameshift and splice-site variants in MEDNIK patients predicted to encode truncated σ1A proteins, with consequent AP-1 dysfunction. However, two AP1S1 missense variants (c.269 T > C and c.346G > A) were recently reported in patients who presented with severe enteropathy but no additional symptoms of MEDNIK. This condition was described as a novel non-syndromic form of congenital diarrhea caused specifically by the AP1S1 missense variants. In this study, we report two patients with the same c.269 T > C variant, who, contrary to the previous cases, presented as complete MEDNIK syndrome. These data substantially revise the presentation of disorders associated with AP1S1 gene variants and indicate that all the identified pathogenic AP1S1 variants result in MEDNIK syndrome. We also provide a series of functional analyses that elucidate the impact of the c.269 T > C variant on σ1A function, contributing to a better understanding of the molecular pathogenesis of MEDNIK syndrome. KEY MESSAGES: A missense AP1S1 c.269 T > C (σ1A L90P) variant causes full MEDNIK syndrome. The σ1A L90P variant is largely unable to assemble into the AP-1 complex. The σ1A L90P variant fails to bind [DE]XXXL[LI] sorting motifs. The σ1A L90P variant results in loss-of-function of the protein.
- MeSH
- adaptorový proteinový komplex - sigma-podjednotky * genetika MeSH
- adaptorový proteinový komplex 1 * genetika MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- missense mutace * MeSH
- průjem genetika MeSH
- syndrom MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
Microtubule associated proteins (MAPs) are widely expressed in the central nervous system, and have established roles in cell proliferation, myelination, neurite formation, axon specification, outgrowth, dendrite, and synapse formation. We report eleven individuals from seven families harboring predicted pathogenic biallelic, de novo, and heterozygous variants in the NAV3 gene, which encodes the microtubule positive tip protein neuron navigator 3 (NAV3). All affected individuals have intellectual disability (ID), microcephaly, skeletal deformities, ocular anomalies, and behavioral issues. In mouse brain, Nav3 is expressed throughout the nervous system, with more prominent signatures in postmitotic, excitatory, inhibiting, and sensory neurons. When overexpressed in HEK293T and COS7 cells, pathogenic variants impaired NAV3 ability to stabilize microtubules. Further, knocking-down nav3 in zebrafish led to severe morphological defects, microcephaly, impaired neuronal growth, and behavioral impairment, which were rescued with co-injection of WT NAV3 mRNA and not by transcripts encoding the pathogenic variants. Our findings establish the role of NAV3 in neurodevelopmental disorders, and reveal its involvement in neuronal morphogenesis, and neuromuscular responses.
- MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- dánio pruhované genetika MeSH
- dítě MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mentální retardace * genetika MeSH
- mikrocefalie * genetika patologie MeSH
- myši MeSH
- neurony metabolismus patologie MeSH
- předškolní dítě MeSH
- proteiny asociované s mikrotubuly genetika metabolismus MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- vývojové poruchy u dětí * genetika MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Genes encoding the KDM5 family of transcriptional regulators are disrupted in individuals with intellectual disability (ID). To understand the link between KDM5 and ID, we characterized five Drosophila strains harboring missense alleles analogous to those observed in patients. These alleles disrupted neuroanatomical development, cognition and other behaviors, and displayed a transcriptional signature characterized by the downregulation of many ribosomal protein genes. A similar transcriptional profile was observed in KDM5C knockout iPSC-induced human glutamatergic neurons, suggesting an evolutionarily conserved role for KDM5 proteins in regulating this class of gene. In Drosophila, reducing KDM5 changed neuronal ribosome composition, lowered the translation efficiency of mRNAs required for mitochondrial function, and altered mitochondrial metabolism. These data highlight the cellular consequences of altered KDM5-regulated transcriptional programs that could contribute to cognitive and behavioral phenotypes. Moreover, they suggest that KDM5 may be part of a broader network of proteins that influence cognition by regulating protein synthesis.
- MeSH
- aktivace transkripce MeSH
- Drosophila melanogaster genetika metabolismus MeSH
- Drosophila genetika metabolismus MeSH
- histondemethylasy metabolismus genetika MeSH
- lidé MeSH
- mentální retardace genetika metabolismus MeSH
- mitochondrie metabolismus genetika MeSH
- neurony * metabolismus MeSH
- proteiny Drosophily * genetika metabolismus MeSH
- proteosyntéza MeSH
- ribozomální proteiny * genetika metabolismus MeSH
- ribozomy metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.
- MeSH
- cyklin-dependentní kinasy metabolismus genetika MeSH
- embryo savčí metabolismus MeSH
- embryonální vývoj * genetika MeSH
- fenotyp MeSH
- lebka embryologie patologie MeSH
- mentální retardace genetika MeSH
- modely nemocí na zvířatech * MeSH
- mutace genetika MeSH
- myši MeSH
- nervus trigeminus embryologie MeSH
- neurogeneze * genetika MeSH
- obličej embryologie abnormality MeSH
- protein doublecortin MeSH
- rozštěp patra genetika patologie embryologie MeSH
- rozštěp rtu genetika patologie embryologie MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.
- MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp * MeSH
- histony * genetika MeSH
- lidé MeSH
- mentální retardace genetika patologie MeSH
- mladiství MeSH
- neurodegenerativní nemoci genetika patologie MeSH
- neurovývojové poruchy genetika patologie MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins (referred to as O-GlcNAcylation) is a modification that is crucial for vertebrate development. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). Missense variants of OGT have recently been shown to segregate with an X-linked syndromic form of intellectual disability, OGT-linked congenital disorder of glycosylation (OGT-CDG). Although the existence of OGT-CDG suggests that O-GlcNAcylation is crucial for neurodevelopment and/or cognitive function, the underlying pathophysiologic mechanisms remain unknown. Here we report a mouse line that carries a catalytically impaired OGT-CDG variant. These mice show altered O-GlcNAc homeostasis with decreased global O-GlcNAcylation and reduced levels of OGT and OGA in the brain. Phenotypic characterization of the mice revealed lower body weight associated with reduced body fat mass, short stature and microcephaly. This mouse model will serve as an important tool to study genotype-phenotype correlations in OGT-CDG in vivo and for the development of possible treatment avenues for this disorder.
- MeSH
- beta-N-acetylhexosaminidasy metabolismus MeSH
- fenotyp MeSH
- glykosylace MeSH
- mentální retardace * genetika MeSH
- modely nemocí na zvířatech * MeSH
- mozek patologie metabolismus MeSH
- myši MeSH
- N-acetylglukosaminyltransferasy * metabolismus genetika nedostatek MeSH
- neurovývojové poruchy patologie genetika enzymologie MeSH
- tělesná hmotnost MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.
- MeSH
- fenotyp MeSH
- histondemethylasy genetika MeSH
- jaderné proteiny genetika MeSH
- lidé MeSH
- malformace nervového systému * MeSH
- mentální retardace * genetika MeSH
- neurovývojové poruchy * genetika MeSH
- obličej MeSH
- regulace genové exprese MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chromosomal band 17q12 is a gene-rich region flanked by segmental duplications, making the region prone to deletions and duplications via the non-allelic homologous recombination mechanism. While deletions cause a well-described disorder with a specific phenotype called renal cysts and diabetes mellitus, the phenotype caused by reciprocal duplications is less specific, primarily because of variable expressivity, and incomplete penetrance. We present an unusual family with four children carrying the 17q12 microduplication inherited from their clinically healthy mother, who was a carrier of both the duplication and, interestingly, also of an atypical deletion of the 17q12 region. The duplication was inherited from her diabetic father and the deletion from her diabetic mother who also suffered from a renal disorder. Clinical manifestations in the family were variable, but all children showed some degree of a neurodevelopmental disorder, such as epilepsy, intellectual disability, delayed speech development, or attention deficit disorder. The simultaneous occurrence of a deletion and duplication in the same chromosomal region in one family is very rare, and to our knowledge, individuals carrying both a deletion and a duplication of this region have never been described.
- MeSH
- chromozomální delece MeSH
- duplikace chromozomů genetika MeSH
- fenotyp MeSH
- lidé MeSH
- mentální retardace * genetika MeSH
- mnohočetné abnormality * genetika MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
PURPOSE: ATP2B2 encodes the variant-constrained plasma-membrane calcium-transporting ATPase-2, expressed in sensory ear cells and specialized neurons. ATP2B2/Atp2b2 variants were previously linked to isolated hearing loss in patients and neurodevelopmental deficits with ataxia in mice. We aimed to establish the association between ATP2B2 and human neurological disorders. METHODS: Multinational case recruitment, scrutiny of trio-based genomics data, in silico analyses, and functional variant characterization were performed. RESULTS: We assembled 7 individuals harboring rare, predicted deleterious heterozygous ATP2B2 variants. The alleles comprised 5 missense substitutions that affected evolutionarily conserved sites and 2 frameshift variants in the penultimate exon. For 6 variants, a de novo status was confirmed. Unlike described patients with hearing loss, the individuals displayed a spectrum of neurological abnormalities, ranging from ataxia with dystonic features to complex neurodevelopmental manifestations with intellectual disability, autism, and seizures. Two cases with recurrent amino-acid variation showed distinctive overlap with cerebellar atrophy-associated ataxia and epilepsy. In cell-based studies, all variants caused significant alterations in cytosolic calcium handling with both loss- and gain-of-function effects. CONCLUSION: Presentations in our series recapitulate key phenotypic aspects of Atp2b2-mouse models and underline the importance of precise calcium regulation for neurodevelopment and cerebellar function. Our study documents a role for ATP2B2 variants in causing heterogeneous neurodevelopmental and movement-disorder syndromes.
- MeSH
- ATPasy přenášející vápník přes plazmatickou membránu MeSH
- behaviorální symptomy MeSH
- cerebelární ataxie * genetika MeSH
- dystonie * genetika MeSH
- fenotyp MeSH
- lidé MeSH
- mentální retardace * genetika MeSH
- myši MeSH
- nedoslýchavost * MeSH
- neurovývojové poruchy * genetika MeSH
- vápník MeSH
- záchvaty genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Neurodevelopmental disorders (NDDs), including severe paediatric epilepsy, autism and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symptomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are 'variants of uncertain significance'. To safely enrol patients in precision medicine clinical trials, it is important to increase our knowledge about which regions in NDD-associated proteins can 'tolerate' missense variants and which ones are 'essential' and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in the 3D structure context of proteins can also provide insights into the molecular mechanisms of disease variants. We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experimentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs and identified 14 377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consensus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest autism, developmental disorders, and epilepsies exome sequencing studies including >360 000 NDD patients and population controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients. In summary, we developed a comprehensive protein structure set for 242 NDDs and identified 14 377 Essential3D sites in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins.
- MeSH
- dítě MeSH
- genetické testování MeSH
- lidé MeSH
- mentální retardace * genetika MeSH
- missense mutace MeSH
- mutace genetika MeSH
- neurovývojové poruchy * genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH