A simple, sensitive and quick HPLC method was developed for the determination of ketoprofen in cell culture media (EMEM, DMEM, RPMI). Separation was performed using a gradient on the C18 column with a mobile phase of acetonitrile and miliQ water acidified by 0.1 % (v/v) formic acid. The method was validated for parameters including linearity, accuracy, precision, limit of quantitation and limit of detection, as well as robustness. The response was found linear over the range of 3-100 μg/mL as demonstrated by the acquired value of correlation coefficient R2=0.9997. The described method is applicable for determination of various pharmacokinetic aspects of ketoprofen in vitro.
The aim of this study was to develop and validate methods for the determination of vitamins B2, B9, E and A in serum using liquid chromatography with mass spectrometry (MS) detection. Vitamin analysis was performed using an ultra performance liquid chromatography combined with tandem MS. The compounds were separated on a BEH C18 RP column (2.1 × 100 mm, 1.7 μm) using a gradient elution with an analysis time of 10 min. Sample preparation included protein precipitation with ethanol. The concentration range in human serum was as follows: riboflavin 5-1000 nmol/L, folic acid 2.5-250 nmol/L, α-tocopherol 0.5-100 μmol/L and all-trans-retinol 25-2500 nmol/L. Accuracy and precision were validated according to Food and Drug Administration guidelines, with coefficients of variation ranging from 3.1-11.7% and recoveries from 94.4-107.5%. Routine monitoring of the complex range of vitamins in bariatric medicine is still not common. This is despite the fact that patients are at risk for glitch deficits, especially of a neurological nature. An analytical method that allows for the complex measurement of both water-soluble and fat-soluble vitamins is important and necessary for the clinical monitoring of bariatric patients. The method we have described could benefit both clinical practice and nutritional research.
- MeSH
- alfa-tokoferol * krev MeSH
- bariatrická chirurgie MeSH
- chromatografie kapalinová metody MeSH
- kyselina listová * krev MeSH
- lidé MeSH
- limita detekce MeSH
- lineární modely MeSH
- reprodukovatelnost výsledků MeSH
- riboflavin * krev MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- vitamin A * krev MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The pungency of chili peppers, the most popular hot spice used worldwide, is caused by capsaicinoids (CPDs), the content of which can vary greatly due to varietal differences and growing conditions. For the first time, a novel simple method for the fast determination of CPDs in chili peppers and chili products was developed based on adsorptive transfer cyclic square-wave voltammetry (AdTCSWV), using adsorption of lipophilic CPDs on an unmodified glassy carbon electrode surface from methanolic extracts of chili pepper samples. The CSWV is based on short oxidation of adsorbed CPDs to quinoid products, and their subsequent reduction and re-oxidation to provide specific analytical signals with a linear range from 0.05 to 1.00 mg L-1. This principle was also implemented in tandem coulometric and amperometric detection of CPDs after HPLC separation. The two-step electrochemical detection provides increased selectivity for CPDs in case of CPDs co-elution with other electrochemically oxidizable components that cannot be reversibly reduced.
BACKGROUND: Different types of analytical methods, with different characteristics, are applied in metabolomics and lipidomics research and include untargeted, targeted and semi-targeted methods. Ultra High Performance Liquid Chromatography-Mass Spectrometry is one of the most frequently applied measurement instruments in metabolomics because of its ability to detect a large number of water-soluble and lipid metabolites over a wide range of concentrations in short analysis times. Methods applied for the detection and quantification of metabolites differ and can either report a (normalised) peak area or an absolute concentration. AIM OF REVIEW: In this tutorial we aim to (1) define similarities and differences between different analytical approaches applied in metabolomics and (2) define how amounts or absolute concentrations of endogenous metabolites can be determined together with the advantages and limitations of each approach in relation to the accuracy and precision when concentrations are reported. KEY SCIENTIFIC CONCEPTS OF REVIEW: The pre-analysis knowledge of metabolites to be targeted, the requirement for (normalised) peak responses or absolute concentrations to be reported and the number of metabolites to be reported define whether an untargeted, targeted or semi-targeted method is applied. Fully untargeted methods can only provide (normalised) peak responses and fold changes which can be reported even when the structural identity of the metabolite is not known. Targeted methods, where the analytes are known prior to the analysis, can also report fold changes. Semi-targeted methods apply a mix of characteristics of both untargeted and targeted assays. For the reporting of absolute concentrations of metabolites, the analytes are not only predefined but optimized analytical methods should be developed and validated for each analyte so that the accuracy and precision of concentration data collected for biological samples can be reported as fit for purpose and be reviewed by the scientific community.
- MeSH
- hmotnostní spektrometrie * metody MeSH
- lidé MeSH
- metabolomika * metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Fingolimod is an oral drug for the escalation of treatment of relapsing-remitting multiple sclerosis in patients with persistent disease activity on first-line drugs or in patients with rapidly progressive severe relapsing-remitting multiple sclerosis. An ultra-high-performance liquid chromatography-tandem mass spectrometry method for determining the concentrations of fingolimod and its active metabolite fingolimod phosphate in whole blood has been developed and validated. The advantages of this method are the easy, fast and cheap sample preparation using protein precipitation from blood with a mixture of acetonitrile-methanol (40:60, v/v). Chromatographic separation was performed on a ultra-high performance liquid chromatography BEH C18 1.7 μm (100 × 2.1 mm) column. Two modes of ionization, electrospray ionization and atmospheric pressure chemical ionization, were tested and compared. For validation, the electrospray ionization mode was chosen. As internal standard, isotopically labeled fingolimod-D4 was used to quantify the analytes. The method was validated according to the rules of the European Medicines Agency. The coefficients of variation for fingolimod were in the range of 1.13-11.88%, and the recovery was 98.80-106.00%. The coefficients of variation for fingolimod phosphate were in the range of 2.73-9.31%, and the recovery was 90.08-107.00%. The method is quite easy and fast and can be used for routine analysis.
- MeSH
- chromatografie kapalinová metody MeSH
- dospělí MeSH
- fingolimod hydrochlorid * krev farmakokinetika terapeutické užití chemie MeSH
- imunosupresiva krev farmakokinetika MeSH
- lidé MeSH
- limita detekce MeSH
- lineární modely MeSH
- reprodukovatelnost výsledků MeSH
- roztroušená skleróza krev farmakoterapie MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 μL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 μmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.
- MeSH
- lidé MeSH
- neurosteroidy krev MeSH
- reprodukovatelnost výsledků MeSH
- steroidy krev analýza MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Systemically administered antibiotics are thought to penetrate the wounds more effectively during negative pressure wound therapy (NPWT).To test this hypothesis total and free antibiotic concentrations were quantified in serum and wound exudate. METHODS: UHPLC-MS/MS methods were developed and validated for the determination of ceftazidime, cefepime, cefotaxime, cefuroxime, cefazolin, meropenem, oxacillin, piperacillin with tazobactam, clindamycin, ciprofloxacin, sulfamethoxazole/trimethoprim (cotrimoxazole), gentamicin, vancomycin, and linezolid. The unbound antibiotic fraction was obtained by ultrafiltration using a Millipore Microcon-30kda Centrifugal Filter Unit. Analysis was performed on a 1.7-μm Acquity UPLC BEH C18 2.1 × 100-mm column with a gradient elution. RESULTS: The validation was performed for serum, exudates and free fractions. For all matrices, requirements were met regarding linearity, precision, accuracy, limit of quantitation, and matrix effect. The coefficient of variation was in the range of 1.2-13.6%.and the recovery 87.6-115.6%, respectively. Among the 29 applications of antibiotics thus far, including vancomycin, clindamycin, ciprofloxacin, oxacillin, cefepime, cefotaxime, cotrimoxazole, and gentamicin, total and free antibiotic concentrations in serum and exudate were correlated. CONCLUSION: This method can accurately quantify the total and free concentrations of 16 antibiotics. Comparison of concentration ratios between serum and exudates allows for monitoring individual antibiotics' penetration capacity in patients receiving NPWT.
- MeSH
- antibakteriální látky MeSH
- cefepim MeSH
- cefotaxim MeSH
- chromatografie kapalinová metody MeSH
- ciprofloxacin MeSH
- exsudáty a transsudáty MeSH
- gentamiciny MeSH
- infekce v ráně * MeSH
- klindamycin MeSH
- kombinace léků trimethoprim a sulfamethoxazol MeSH
- lidé MeSH
- oxacilin MeSH
- sternotomie MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- terapie ran pomocí řízeného podtlaku * MeSH
- vankomycin MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Uric acid and its oxidation product allantoin are excellent biomarkers of oxidative stress in humans. Currently, there are high requirements not only for tests monitoring oxidative stress but also for screening laboratory tests in general. The highest demand is imposed on the simplest sampling, easy transport of the sample, and the shortest possible analysis time. The possible solution how to fulfil the requirements is sampling by dried blood spot technique with subsequent HPLC-MS/MS analysis. A fast, sensitive, and reliable HPLC-MS/MS method for the simultaneous determination of uric acid and allantoin from dried blood spots using stable isotopically labelled analogs as internal standards was developed. The separation took place in the reversed phase within 3 min, with protein precipitation and extraction in a one-step procedure. The analytical parameters of the method were satisfactory with an excellent linear range. The presented method was used to determine allantoin and uric acid levels in dried blood spot samples from 100 healthy volunteer donors. The median uric acid concentration in the cohort was 239.3 μmol/L and the median allantoin concentration was 5.6 μmol/L. The presented analytical protocol and method are suitable for screening and monitoring allantoin and uric acid levels as biomarkers of oxidative stress in clinical practice.
Ixazomib is the only orally active proteasome inhibitor used in clinical practice as an anticancer drug. The novel, rapid UHPLC-UV assay for ixazomib was developed and applied to the forced degradation study followed by HRMS identification of the main degradation products. Oxidative deboronation and hydrolysis of the amid bond were found to be the principal degradation pathways. The chemical standards of the main degradation products were prepared. The method was validated for the simultaneous assay of ixazomib and its degradation products within the concentration ranges of 2.50-100.00 μg/mL (ixazomib); 0.75-60.00 μg/mL (Impurity A and B) and 1.25-60.00 μg/mL (Impurity C). The stability study revealed that ixazomib in solution is: 1) relatively stable in neutral and acidic environments, 2) its decomposition is accelerated at higher pH, 3) it is sensitive to the effects of oxidants and light, and 4) the degradation of ixazomib follows the first-order kinetics under neutral, acidic, alkaline, and UV stress. Contrary, the solid substance of ixazomib citrate was relatively resistant to heat (70 °C), heat/humidity (70 °C/75 % RH), and UV irradiation for 24 h. This study presents the first MS-compatible UHPLC method for the quantification of ixazomib and its degradation products. Furthermore, it provides data about the inherent stability and kinetics of degradation of ixazomib in a solution that may be useful in further investigation of this drug, or the development of novel proteasome inhibitors based on the ixazomib structure.