BACKGROUND: Renal cell carcinoma (RCC) is a disease typified by anomalies in cell metabolism. The function of mitochondria, including subunits of mitochondrial respiratory complex II (CII), in particular SDHB, are often affected. Here we investigated the state and function of CII in RCC patients. METHODS: We evaluated tumour tissue as well as the adjacent healthy kidney tissue of 78 patients with RCC of different histotypes, focusing on their mitochondrial function. As clear cell RCC (ccRCC) is by far the most frequent histotype of RCC, we focused on these patients, which were grouped based on the pathological WHO/ISUP grading system to low- and high-grade patients, indicative of prognosis. We also evaluated mitochondrial function in organoids derived from tumour tissue of 7 patients. RESULTS: ccRCC tumours were characterized by mutated von Hippel-Lindau gene and high expression of carbonic anhydrase IX. We found low levels of mitochondrial DNA, protein and function, together with CII function in ccRCC tumour tissue, but not in other RCC types and non-tumour tissues. Mitochondrial content increased in high-grade tumours, while the function of CII remained low. Tumour organoids from ccRCC patients recapitulated molecular characteristics of RCC tissue. CONCLUSIONS: Our findings suggest that the state of CII, epitomized by its assembly and SDHB levels, deteriorates with the progressive severity of ccRCC. These observations hold the potential for stratification of patients with worse prognosis and may guide the exploration of targeted therapeutic interventions.
- MeSH
- antigeny nádorové MeSH
- dospělí MeSH
- karboanhydrasa IX metabolismus genetika MeSH
- karcinom z renálních buněk * patologie metabolismus genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondriální DNA genetika metabolismus MeSH
- mitochondrie * metabolismus patologie genetika MeSH
- mutace MeSH
- nádorový supresorový protein VHL genetika metabolismus MeSH
- nádory ledvin * patologie metabolismus genetika MeSH
- respirační komplex II * metabolismus genetika MeSH
- senioři MeSH
- sukcinátdehydrogenasa genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Circulating endometrial cells (CECs) have emerged as a new biomarker of advanced disease in women with endometriosis. The identification of several subtypes of CECs (e.g., stem cell-like, epithelial, glandular, stromal) has opened the way for characterization of endometriosis-associated CECs. This study focused on the isolation and characterization of CECs and disseminated endometrial cells (DECs) in patients with spontaneous pneumothorax (SP). The primary objective was to differentiate between cancer and non-cancer cells in patients with no previous cancer diagnosis. The MetaCell® size-based separation protocol was used to enrich CECs/DECs. Evaluation of the captured cells by 3D microscopy was performed using a NANOLIVETM microscope using a holographic approach. Based on gene expression analysis (GEA), we can conclude that mitochondria are much more active in primary tumors compared to endometriosis tissue (e.g. MT-ND1, MT-ATP6 genes). The culture of DECs is made of stromal, stem and immune cells. In vitro culture of DECs is characterized by an increase in the epithelial marker KRT18. Similarly, NFE2L2, a proerythroid factor, is also elevated. Further, a significant decrease in the amount of stem and immune cells was observed in the cell culture of DECs. The data presented here show how morphologically plastic the changes in the mitochondrial network can be and how cells can reflect them at the level of gene expression. The markers identified could help in the accompanying diagnostic process of the spontaneous pneumothorax in women of reproductive age.
- MeSH
- dospělí MeSH
- endometrióza * patologie diagnóza genetika MeSH
- endometrium patologie metabolismus MeSH
- lidé MeSH
- mitochondrie * metabolismus patologie MeSH
- pneumotorax * patologie diagnóza MeSH
- stanovení celkové genové exprese metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Circulating tumor cells (CTCs) have significant potential to become an important tool for monitoring the effects of treatment in solid tumors. The present study reports the occurance of CTCs in cervical cancer (CC) patients during radical chemoradiotherapy (CRT), including brachytherapy (BRT), and during the follow-up period. Patients diagnosed with CC treated with radical CRT were included in the study (n=30). A total of 167 CTC-tests (MetaCell®) were provided at predefined testing time points during the study follow-up (e.g., before CRT, after CRT, every three months of follow-up). In parallel with CTC-testing, SCC-Ag were measured to compare their predictive values during treatment. CTCs were present in 96% (25/26) of patients at the time of diagnosis and in 61% (14/23) after treatment. Patients who relapsed during the 36-month follow-up (n=10) showed an elevation in pre-treatment CTC- numbers, similarly there was a significant increase in pre-treatment SCC-Ag. As next, an increased number of CTCs was observed approximately 12 weeks before relapse was diagnosed by standard imaging modalities (MRI, US, PET-CT) in 3 of 4 patients. In addition to standardized vital cytomorphology of enriched CTCs, quantitative PCR (qPCR) was used to inform the nature of CTCs before treatment. Analysis revealed increased SOX2 and POUSF expression in CTCs in the group of patients with recurrence (P < 0.02). Disease aggressiveness may be related to increased expression of stem cell markers, as found in samples from relapsed patients. CTCs may be an aid to assess tumor burden and disease aggressiveness. An increase in CTCs precedes an increase in SCC-Ag and confirmation of relapse by imaging, as shown in our study.
- Publikační typ
- časopisecké články MeSH
Mitochondrially targeted anticancer drugs (mitocans) that disrupt the energy-producing systems of cancer are emerging as new potential therapeutics. Mitochondrially targeted tamoxifen (MitoTam), an inhibitor of mitochondrial respiration respiratory complex I, is a first-in-class mitocan that was tested in the phase I/Ib MitoTam-01 trial of patients with metastatic cancer. MitoTam exhibited a manageable safety profile and efficacy; among 37% (14/38) of responders, the efficacy was greatest in patients with metastatic renal cell carcinoma (RCC) with a clinical benefit rate of 83% (5/6) of patients. This can be explained by the preferential accumulation of MitoTam in the kidney tissue in preclinical studies. Here we report the mechanism of action and safety profile of MitoTam in a case series of RCC patients. All six patients were males with a median age of 69 years, who had previously received at least three lines of palliative systemic therapy and suffered progressive disease before starting MitoTam. We recorded stable disease in four, partial response in one, and progressive disease (PD) in one patient. The histological subtype matched clear cell RCC (ccRCC) in the five responders and claro-cellular carcinoma with sarcomatoid features in the non-responder. The number of circulating tumor cells (CTCs) was evaluated longitudinally to monitor disease dynamics. Beside the decreased number of CTCs after MitoTam administration, we observed a significant decrease of the mitochondrial network mass in enriched CTCs. Two patients had long-term clinical responses to MitoTam, of 50 and 36 weeks. Both patients discontinued treatment due to adverse events, not PD. Two patients who completed the trial in November 2019 and May 2020 are still alive without subsequent anticancer therapy. The toxicity of MitoTam increased with the dosage but was manageable. The efficacy of MitoTam in pretreated ccRCC patients is linked to the novel mechanism of action of this first-in-class mitochondrially targeted drug.
- Publikační typ
- kazuistiky MeSH
BACKGROUND: Mitochondria present an emerging target for cancer treatment. We have investigated the effect of mitochondrially targeted tamoxifen (MitoTam), a first-in-class anti-cancer agent, in patients with solid metastatic tumours. METHODS: MitoTam was tested in an open-label, single-centre (Department of Oncology, General Faculty Hospital, Charles University, Czech Republic), phase I/Ib trial in metastatic patients with various malignancies and terminated oncological therapies. In total, 75 patients were enrolled between May 23, 2018 and July 22, 2020. Phase I evaluated escalating doses of MitoTam in two therapeutic regimens using the 3 + 3 design to establish drug safety and maximum tolerated dose (MTD). In phase Ib, three dosing regimens were applied over 8 and 6 weeks to evaluate long-term toxicity of MitoTam as the primary objective and its anti-cancer effect as a secondary objective. This trial was registered with the European Medicines Agency under EudraCT 2017-004441-25. FINDINGS: In total, 37 patients were enrolled into phase I and 38 into phase Ib. In phase I, the initial application of MitoTam via peripheral vein indicated high risk of thrombophlebitis, which was avoided by central vein administration. The highest dose with acceptable side effects was 5.0 mg/kg. The prevailing adverse effects (AEs) in phase I were neutropenia (30%), anaemia (30%) and fever/hyperthermia (30%), and in phase Ib fever/hyperthermia (58%) together with anaemia (26%) and neutropenia (16%). Serious AEs were mostly related to thromboembolic (TE) complications that affected 5% and 13% of patients in phase I and Ib, respectively. The only statistically significant AE related to MitoTam treatment was anaemia in phase Ib (p = 0.004). Of the tested regimens weekly dosing with 3.0 mg/kg for 6 weeks afforded the best safety profile with almost all being grade 1 (G1) AEs. Altogether, five fatalities occurred during the study, two of them meeting criteria for Suspected Unexpected Serious Adverse Events Reporting (SUSAR) (G4 thrombocytopenia and G5 stroke). MitoTam showed benefit evaluated as clinical benefit rate (CBR) in 37% patients with the largest effect in renal cell carcinoma (RCC) where four out of six patients reached disease stabilisation (SD), one reached partial response (PR) so that in total, five out of six (83%) patients showed CBR. INTERPRETATION: In this study, the MTD was established as 5.0 mg/kg and the recommended dose of MitoTam as 3.0 mg/kg given once per week via central vein with recommended preventive anti-coagulation therapy. The prevailing toxicity included haematological AEs, hyperthermia/fever and TE complications. One fatal stroke and non-fatal G4 thrombocytopenia were recorded. MitoTam showed high efficacy against RCC. FUNDING: Smart Brain Ltd. TRANSLATION: For the Czech translation of the abstract see Supplementary Materials section.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Dendritic cell (DC) therapy counts to the promising strategies how to weaken and eradicate cancer disease. We aimed to develop a good manufacturing practice (GMP) protocol for monocyte-derived DC (Mo-DC) maturation using circulating tumor cells lysates with subsequent experimental T-cell priming in vitro. METHODS: DC differentiation was induced from a population of immunomagnetically enriched CD14 + monocytes out of the leukapheresis samples (n = 6). The separation was provided automatically, in a closed bag system, using CliniMACS Prodigy® separation protocols (Miltenyi Biotec). For differentiation and maturation of CD14 + cells, DendriMACs® growing medium with supplements (GM-CSF, IL-4, IL-6, IL-1B, TNFa, PGE) was used. Immature Mo-DCs were loaded with autologous circulating tumor cell (CTCs) lysates. Autologous CTCs were sorted out by size-based filtration (MetaCell®) of the leukapheresis CD14-negative fraction. A mixture of mature Mo-DCs and autologous non-target blood cells (NTBCs) was co-cultured and the activation effect of mature Mo-DCs on T-cell activation was monitored by means of multimarker gene expression profiling. RESULTS: New protocols for mMo-DC production using automatization and CTC lysates were introduced including a feasible in vitro assay for mMo-DC efficacy evaluation. Gene expression analysis revealed elevation for following genes in NTBC (T cells) subset primed by mMo-DCs: CD8A, CD4, MKI67, MIF, TNFA, CD86, and CD80 (p ≤ 0.01). CONCLUSION: Summarizing the presented data, we might conclude mMo-DCs were generated using CliniMACS Prodigy® machine and CTC lysates in a homogenous manner showing a potential to generate NTBC activation in co-cultures. Identification of the activation signals in T-cell population by simple multimarker-qPCRs could fasten the process of effective mMo-DC production.
- MeSH
- dendritické buňky * metabolismus MeSH
- faktor stimulující granulocyto-makrofágové kolonie farmakologie MeSH
- interleukin-4 farmakologie MeSH
- interleukin-6 farmakologie MeSH
- lidé MeSH
- monocyty * metabolismus MeSH
- nádorové cirkulující buňky * metabolismus MeSH
- prostaglandiny E farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Background and Aims: The aim of this study was to characterize circulating tumor cells (CTCs) during neoadjuvant chemotherapy (NACT) in early and locally advanced breast cancer (LABC) patients. Using ultrasound, tumor volume measurement was compared with the presence and the molecular nature of CTCs over multiple time intervals corresponding to treatment periods. Methods: A total of 20 patients diagnosed with breast cancer (BC) of different histotypes were monitored during the NACT period and in the follow-up period (~5 years). Peripheral blood for CTCs (n = 115) was taken prior to NACT, after two to three chemotherapy cycles, after the completion of NACT (before surgery) and at some time points during adjuvant therapy. CTCs were enriched using a size-based filtration method (MetaCell®) capturing viable cells, which enabled vital fluorescence microscopy. A set of tumor-associated (TA) genes and chemoresistance-associated (CA) genes was analyzed by qPCR in the enriched CTC fractions. Results: The analysis of tumor volume reduction after administration of anthracyclines (AC) and taxanes (TAX) during NACT showed that AC therapy was responsive in 60% (12/20) of tumors, whereas TAX therapy was responsive in 30% (6/20; n.s.). After NACT, CTCs were still present in 70.5% (12/17) of patients (responders versus non-responders, 61.5% versus 100%; not significant).In triple-negative BC (TNBC) patients (n = 8), tumor volume reduction was observed in 75% cases. CTCs were significantly reduced in 42.9% of all HER2-negative BC patients. In HER2+ tumors, CTC reduction was reported in 16.6% only. Relapses were also more prevalent in the HER2-positive patient group (28.5 versus 66.6%).During NACT, the presence of CTCs (three tests for each patient) identified patients with relapses and indicated significantly shorter progression-free survival (PFS) rates (p = 0.03). Differentiation between progressive disease and non-progressive disease was obtained when the occurrence of excessive expression for CA genes in CTCs was compared (p = 0.024). Absence of tumor volume reduction was also significantly indicative for progressive disease (p = 0.0224).Disseminated CTCs in HER2-negative tumors expressed HER2 in 29% of samples collected during the overall follow-up period (16/55), and in 32% of samples during the follow-up of NACT (10/31). The change accounted for 78.5% of HER2-negative patients (11/14) in total, and 63.6% of the conversion cases occurred during NACT (7/11). For the remaining four patients (36.3%), conversion to HER2+ CTCs occurred later during adjuvant therapy. We believe there is the possibility of preventing further progression by identifying less responsive tumors during NACT using CTC monitoring, which could also be used effectively during adjuvant therapy.
- Publikační typ
- časopisecké články MeSH
Treatment of aggressive glioblastoma multiforme (GBM) must be based on very precise histological and molecular diagnostic of GBM type. According to the WHO guidelines, only tissue biopsy is a relevant source of cellular material evaluated in the diagnostic process to specify the tumor features. Nevertheless, obtaining a GBM biopsy is complicated and relies mostly on resection surgery. Evaluating circulating free DNA and/or circulating tumor cells (CTCs) in the clinic, using a liquid biopsy could represent a non-invasive cancer care optimization. In the present study, the peripheral blood of patients undergoing GBM resection (n = 18) was collected and examined for CTCs. The feasibility of GBM molecular diagnostics from a simple non-invasive peripheral blood withdrawal was evaluated. The size-based enriched CTCs were analyzed using cytomorphology and their origin confirmed based on mutational analysis. In addition, shared DNA mutations in CTCs and in primary tumor tissue were searched. For the identification of CTCs, next generation sequencing (NGS) was used. The GeneReader™ sequencing platform enables targeted sequencing of a 12-gene panel and direct evaluation of detected gene variations using QIAGEN Clinical Insight Analyze (QCI-A) software with a special algorithm for liquid biopsy sequencing analysis. Herein, we present a standard operating procedure for CTC enrichment in GBM patients, CTC in vitro culture, CTC cytomorphological evaluation, and NGS analysis of CTCs using the QIAGEN Actionable Insights Tumor (ATP) Panel. CTCs were present in all tested patients (18/18). The NGS data generated for formalin-fixed paraffin-embedded (FFPE) primary tumor tissues and CTCs reached significantly high-quality parameters. The comparisons between different sample types (CTCs vs. primary tumors) and sampling area (different primary tumor regions) showed a significant level of concordance, indicating CTC testing could be used for patient monitoring and recurrence awareness. Notably, more mutations were detected when analyzing CTC samples compared with the paired primary tumors (n = 3). The results confirm the feasibility of using CTCs as a source of tumor DNA in a diagnostic process, especially when evaluating the molecular characteristics of GBMs. A major advantage of the presented NGS approach for detecting CTCs is the simultaneous identification of several markers relevant for GBM diagnostics, allowing molecular diagnostics on cytological specimens and potential administration of innovative targeted therapies.
- Publikační typ
- časopisecké články MeSH
Komplexní sdělení o současných možnostech léčby karcinomu štítné žlázy v závislosti na jeho histologickém typu a rozsahu postižení se zaměřením na lokálně pokročilé a hraničně operabilní nálezy. Léčba této heterogenní skupiny nádorů vyžaduje multidisciplinární spolupráci. Popis 6 zajímavých kazuistik s obrazovou dokumentací, popisem léčby a průběhem.
Comprehensive information about current thyroid carcinoma treatment options depending on its histology and extent of the disease, focusing on locally advanced findings at the limit of operability. Treatment of such a heterogeneous group requires interdisciplinary cooperation. We provide 6 unique case reports including imaging scans, description of the therapy and description of development of the condition.
- Klíčová slova
- resekce trachey,
- MeSH
- chirurgie operační metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory štítné žlázy * chirurgie farmakoterapie MeSH
- protokoly protinádorové léčby MeSH
- senioři MeSH
- trachea chirurgie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- přehledy MeSH
BACKGROUND: The occurrence of catamenial pneumothorax (CP) is rare, and the awareness of this diagnosis among physicians is insufficient. CP is highly correlated with pelvic endometriosis and remains the most common form of thoracic endometriosis syndrome. Circulating endometrial cells (CECs) have been previously detected in patients with pelvic endometriosis. Could CECs bring new insights into pneumothorax management? METHODS: This study aims to describe the occurrence and molecular characteristics of CECs in women with spontaneous pneumothorax (SP) (N = 20) with high suspicion of its catamenial character. CECs were enriched from peripheral blood by size-based separation (MetaCell). In addition to cytomorphology, gene expression profiling of captured cells was performed for 24 endometriosis-associated genes. RESULTS: CECs were present in all 20 patients with SP. Enriched CECs exhibited four character features: epithelial, stem cell-like, stroma-like, and glandular. However, not all of them were present in every sampling. Gene expression profiling revealed two distinct phenotypes of CECs in SP and/or CP: one of them refers to the diaphragm openings syndrome and the other to endometrial tissue pleural implantations. Comparisons of the gene expression profiles of CECs in pneumothorax (CECs-SP group) with CECs in pelvic endometriosis (CECs-non-SP group) have revealed significantly higher expression of HER2 in the CECs-SP group compared with the CECs-non-SP group. CONCLUSIONS: This proof-of-concept study demonstrates successful isolation and characterization of CECs in patients with SP. Identification of CECs in SP could alert endometriosis involvement and help early referral to gynecologic consultation for further examination and treatment.
- MeSH
- antigen CA-125 genetika MeSH
- dospělí MeSH
- endometrióza krev genetika MeSH
- endometrium cytologie MeSH
- keratin-18 genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mladý dospělý MeSH
- mucin 1 genetika MeSH
- nemoci pleury krev genetika MeSH
- pneumotorax krev diagnóza genetika MeSH
- receptor erbB-2 genetika MeSH
- studie případů a kontrol MeSH
- tekutá biopsie MeSH
- transkriptom MeSH
- vimentin genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH