Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
- MeSH
- fenotyp * MeSH
- glioblastom * patologie genetika metabolismus MeSH
- invazivní růst nádoru * genetika MeSH
- lidé MeSH
- membránové proteiny MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory mozku * patologie genetika metabolismus MeSH
- pohyb buněk genetika fyziologie MeSH
- proteiny nervové tkáně metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
To investigate the impact of hyperbaric oxygen therapy (HBOT) on the cognitive function of mice with Alzheimer's disease (AD), while also identifying the cellular pathways associated with autophagy involved in the treatment. Twenty-four APP/PSl double transgenic mice were randomly assigned to either Group A or Group B, while another 24 C57 mice were randomly allocated to Group C or Group D. HBOT was administered to mice in Group B and Group D, and the Morris water maze test was used to assess changes in mice behavior. Histological examination using hematoxylin and eosin staining was conducted to observe pathological alterations in the hippocampus of the mice brain tissue. Polymerase chain reaction (PCR) was employed to analyze autophagy-related gene pathways in the hippocampus of the mice. Following HBOT, mice in Group B exhibited a significant reduction in escape latency and a notable increase in residence time within the target quadrant compared with Group A (P<0.05), as well as Group C and Group D (P<0.01). The hippocampal neurons in Group A and Group B mice exhibited disorganized arrangements, characterized by pyknosis and margination. Conversely, neurons in Group C displayed orderly arrangements, retaining intact structures with round nuclei demonstrating clear nuclear staining and normal morphology. The cellular morphology of mice in Group D remained unaffected. PCR analysis revealed no notable disparity in autophagy-related gene expression between Group A and Group C. However, the expression levels of five genes including Tgfb1, Mapk14, Bid, Atg7, and Akt1, were significantly elevated in Group B compared to Group A. HBOT has the potential to improve the cognitive function in mice modeled with AD. This improvement of cognitive function appears to be mediated by the up-regulation of autophagy-related genes, specifically Tgfb1, Mapk14, Bid, Atg7, and Akt1. These results indicate that HBOT may offer a therapeutic strategy for treating AD by enhancing autophagy mechanisms. Key words Alzheimer's disease, Autophagy, Hyperbaric oxygen, Morris water maze, PCR.
- MeSH
- Alzheimerova nemoc * terapie metabolismus genetika psychologie MeSH
- autofagie * fyziologie MeSH
- hipokampus metabolismus patologie MeSH
- hyperbarická oxygenace * MeSH
- kognice * fyziologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL * MeSH
- myši transgenní * MeSH
- myši MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Berberine (BBR), a small molecule protoberberine isoquinoline alkaloid, is easy to cross the blood-brain barrier and is a potential drug for neurodegenerative diseases. Here, we explored the role and molecular mechanism of BBR in Alzheimer's disease (AD) progression. Weighted gene co-expression network analysis (WGCNA) was conducted to determine AD pathology-associated gene modules and differentially expressed genes (DEGs) were also identified. GO and KEGG analyses were performed for gene function and signaling pathway annotation. Cell counting kit-8 (CCK8) assay was applied to analyze cell viability. Immunofluorescence (IF) staining assay was conducted to measure the levels of polarization markers. The production of inflammatory cytokines was analyzed by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) were detected using a ROS detection kit and a MMP Detection Kit (JC-1), respectively. AD pathology-associated DEGs were applied for GO function annotation and KEGG enrichment analysis, and the results uncovered that AD pathology was related to immune and inflammation. Lipopolysaccharide (LPS) exposure induced the M1 phenotype of microglia, and BBR suppressed LPS-induced M1 polarization and induced microglia toward M2 polarization. Through co-culture of microglia and neuronal cells, we found that BBR exerted a neuro-protective role by attenuating the injury of LPS-induced HMC3 on SH-SY5Y cells. Mechanically, BBR switched the M1/M2 phenotypes of microglia by activating PI3K-AKT signaling. In summary, BBR protected neuronal cells from activated microglia-mediated neuro-inflammation by switching the M1/M2 polarization in LPS-induced microglia via activating PI3K-AKT signaling. Key words Alzheimer's Disease, Berberine, Microglia polarization, Neuroinflammation, PI3K-AKT signaling.
- MeSH
- Alzheimerova nemoc * metabolismus farmakoterapie patologie MeSH
- berberin * farmakologie terapeutické užití MeSH
- fosfatidylinositol-3-kinasy * metabolismus MeSH
- lidé MeSH
- mikroglie * účinky léků metabolismus MeSH
- myši MeSH
- neuroprotektivní látky * farmakologie MeSH
- polarita buněk účinky léků MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- signální transdukce * účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The objective of our in vitro study was to quantify the biochemical profile where the total polyphenol, flavonoid and phenolic acid content was determined. The antioxidant potential of microgreen extract from Trigonella foenum-graecum L., was measured molybdenum reducing power assay. Specifically, the study assessed parameters such as metabolic activity (AlamarBlueTM assay), membrane integrity (CFDA-AM assay), mitochondrial potential (JC-1 assay), as well as reactive oxygen species generation (NBT assay). In addition, the steroid hormone release in TM3 murine Leydig cells after 12 h and 24 h exposures were quantified by enzyme-linked immunosorbent assay. The gained results indicate the highest value in total flavonoid content (182.59+/-2.13 mg QE) determination, supported by a significant (108.25+/-1.27 mg TE) antioxidant activity. The effects on metabolic activity, cell membrane integrity, and mitochondrial membrane potential were found to be both time- and dose-dependent. Notably, a significant suppression in reactive oxygen species generation was confirmed at 150, 200 and 250 microg/ml after 24 h exposure. In addition, progesterone and testosterone release was stimulated up to 250 microg/ml dose of Trigonella, followed by a decline in both steroid production at 300 and 1000 microg/ml. Our results indicate, that Trigonella at lower experimental doses (up to 250 microg/ml) may positively affect majority of monitored cell parameters in TM3 Leydig cells. Overleaf, increasing experimental doses may negatively affect the intracellular parameters already after 12 h of in vitro exposure. Key words Microgreens, Trigonella foenum-graecum L., Fenugreek, Leydig cells, Male reproduction.
- MeSH
- antioxidancia farmakologie MeSH
- buněčné linie MeSH
- fytonutrienty farmakologie MeSH
- Leydigovy buňky * účinky léků metabolismus MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- myši MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné extrakty * farmakologie MeSH
- testosteron metabolismus MeSH
- Trigonella * chemie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hydrogen sulfide (H2S) is a gas neurotransmitter that is synthesized in various mammalian tissues including vascular tissues and regulates vascular tone. The aim of this study is to investigate whether the endogenous L-cysteine/H2S pathway is impaired due to aging and endothelial denudation in mouse isolated thoracic aorta. For this purpose, young (3-4 months) and old (23-25 months) mice were used in the experiments. The effects of aging and endothelium on endogenous and exogenous H2S-induced vasorelaxation were investigated by cumulative L-cysteine-(1 microM-10 mM) and NaHS-(1 microM-3 mM) induced vasorelaxations, respectively. The L-cysteine-induced relaxations were reduced in old mice aorta compared to the young mice. Also, vasorelaxant responses to L-cysteine (1 microM-10 mM) were reduced on aorta rings with denuded-endothelium of young and old mice. However, the relaxation responses to NaHS were not altered by age or endothelium denudation. The loss of staining of CSE in the endothelial layer was observed in old thoracic aorta. Ach-induced (1-30 microM) relaxation almost abolished in endothelium-denuded rings from both mice group. Also, relaxation Ach reduced in intact endothelium tissue of old mice aorta. In conclusion, the vasorelaxant responses to L-cysteine but not NaHS decreased and the protein expression of CSE reduced in old thoracic aorta rings consistent with a decrease in H2S concentration with aging and endothelium damage, suggesting that aging may be lead to decrease in enzyme expression and H2S signaling system due to endothelium damage in mouse thoracic aorta. Key words Aging, Hydrogen sulfide, L-cysteine, Endothelium, Thoracic aorta.
- MeSH
- aorta thoracica * účinky léků metabolismus fyziologie MeSH
- cévní endotel * metabolismus účinky léků MeSH
- cystein metabolismus farmakologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- signální transdukce MeSH
- stárnutí * metabolismus MeSH
- sulfan * metabolismus MeSH
- vazodilatace * účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Angelman Syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of ubiquitin-protein ligase E3A (UBE3A), resulting in marked changes in synaptic plasticity. In AS mice, a dysregulation of Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) was previously described. This has been convincingly validated through genetic rescue of prominent phenotypes in mouse cross-breeding experiments. Selective ligands that specifically stabilize the CaMKIIα central association (hub) domain and affect different conformational states in vitro are now available. Two of these ligands, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) and (E)-2-(5-hydroxy-2-phenyl-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (Ph-HTBA), confer neuroprotection after ischemic stroke in mice where CaMKIIα is known to be dysregulated. Here, we sought to investigate whether pharmacological modulation with these prototypical CaMKIIα hub ligands presents a viable approach to alleviate AS symptoms. We performed an in vivo functional evaluation of AS mice treated for a total of 14 days with either HOCPCA or Ph-HTBA (7 days pre-treatment and 7 days of behavioural assessment). Both compounds were well-tolerated but unable to revert robust phenotypes of motor performance, anxiety, repetitive behaviour or seizures in AS mice. Biochemical experiments subsequently assessed CaMKIIα autophosphorylation in AS mouse brain tissue. Taken together our results indicate that pharmacological modulation of CaMKIIα via the selective hub ligands used here is not a viable treatment strategy in AS.
- MeSH
- Angelmanův syndrom * farmakoterapie genetika MeSH
- chování zvířat účinky léků MeSH
- fenotyp * MeSH
- ligandy MeSH
- modely nemocí na zvířatech * MeSH
- mozek účinky léků metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neuroprotektivní látky farmakologie MeSH
- proteinkinasa závislá na vápníku a kalmodulinu typ 2 * metabolismus MeSH
- ubikvitinligasy metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Therefore, understanding the molecular regulatory mechanisms underlying the pathogenesis of DKD is imperative. In this study, we aimed to explore the molecular mechanisms of tubule region endothelial dysfunction in early DKD. Early-stage DKD model was established in 16-week-old female db/db mice for 16 weeks. Body weight, glucose level, and urine albumin-to-creatinine ratio (UACR) were measured. Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining were performed to evaluate pathological lesions. RNA sequencing data of the kidneys and integrated publicly available single-cell and spatial transcriptome datasets were used to investigate the mechanism of endothelial dysfunction. There was a significant increase in body weight (p = 0.001), glucose levels (p=0.0008), and UACR (p=0.006) in db/db mice compared with db/m mice. H&E and PAS staining showed that vacuolar lesions and protein casts of tubules were the major histopathological changes observed in early-stage DKD mice. The apoptotic pathway in endothelial cells was notably activated in DKD, and Thbs1 was identified as the central gene involved in this apoptotic process. Deconvolution of the cell composition in the RNA sequencing data showed a decrease in the proportion of endothelial cells in the DKD mice. Further analysis of the activity and regulatory network of transcription factors showed that Creb1 was activated in both mouse and human early-stage DKD, suggesting that Creb1 activation may be involved in early kidney injury. The endothelial cell apoptotic pathway is activated in DKD, and the proportion of endothelial cells was reduced in the DKD mice, which is significantly associated with Thbs1. Keywords: Diabetic kidney disease, Endothelial dysfunction, RNA sequencing,Thbs1, Creb1.
- MeSH
- apoptóza MeSH
- diabetické nefropatie * patologie metabolismus patofyziologie genetika MeSH
- endoteliální buňky metabolismus patologie MeSH
- ledvinové kanálky patologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- progrese nemoci * MeSH
- protein vázající cAMP responzivní element metabolismus genetika MeSH
- thrombospondin 1 metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nonalcoholic fatty liver disease (NAFLD) is characterized by elevated hepatic lipids caused by nonalcoholic factors, where histone lactylation is lately discovered as a modification driving disease progression. This research aimed to explore the role of histone 3 lysine 18 lactylation (H3K18lac) in NAFLD progression using a high-fat diet (HFD)-treated mouse model and free fatty acids (FFA)-treated L-02 cell lines. Lipids accumulation was screened via Oil Red O staining, real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, and commercially available kits. Similarly, molecular mechanism was analyzed using immunoprecipitation (IP), dual-luciferase reporter assay, and RNA decay assay. Results indicated that FFA upregulated lactate dehydrogenase A (LDHA) and H3K18lac levels in L-02 cells. Besides, LDHA-mediated H3K18lac was enriched on the proximal promoter of methyltransferase 3 (METTL3), translating into an increased expression. Moreover, METTL3 or LDHA knockdown relieved lipid accumulation, decreased total cholesterol (TC) and triglyceride (TG) levels, and downregulated lipogenesis-related proteins in FFA-treated L-02 cell lines, in addition to enhancing the m6A and mRNA levels of stearoyl-coenzyme A desaturase 1 (SCD1). The m6A modification of SCD1 was recognized by YTH N6-methyladenosine RNA binding protein F1 (YTHDF1), resulting in enhanced mRNA stability. LDHA was found to be highly expressed in HFD-treated mice, where knocking down LDHA attenuated HFD-induced hepatic steatosis. These findings demonstrated that LDHA-induced H3K18lac promoted NAFLD progression, where LDHA-induced H3K18lac in METTL3 promoter elevated METTL3 expression, thereby promoting m6A methylation and stabilizing SCD1 via a YTHDF1-dependent manner. Keywords: Nonalcoholic fatty liver disease, LDHA, METTL3, YTHDF1, Histone lactylation.
- MeSH
- adenosin * metabolismus analogy a deriváty MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- histony * metabolismus MeSH
- L-laktátdehydrogenasa metabolismus MeSH
- lidé MeSH
- methyltransferasy * metabolismus genetika MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- nealkoholová steatóza jater * metabolismus patologie MeSH
- progrese nemoci * MeSH
- proteiny vázající RNA * metabolismus genetika MeSH
- stearyl-CoA-desaturasa * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment. Analyses of APS placentas showed a reduced cell proliferation, lower protein content and thinning of endothelial cells. Disturbances in APS trophoblast cells were linked to a cell cycle shift in cytotrophoblast cells, and a reduced number of spiral artery-associated trophoblast giant cells (SpA-TGC). Transcriptomic profiling of placental tissue highlighted disruptions in cell cycle regulation with notable downregulation of genes involved in developmental or signaling processes. Cellular senescence, metabolic and p53-related pathways were also enriched, suggesting potential mechanisms underlying placental dysfunction in APS. Thrombotic events, though occasionally detected, appeared to have no significant impact on the overall pathological changes. The increased number of dysfunctional uNK cells was not associated with enhanced cytotoxic capabilities. Transcriptomic data corroborated these findings, showing prominent suppression of NK cell secretory capacity and cytokine signaling pathways. Our study highlights the multifactorial nature of APS-associated placental pathologies, which involve disrupted angiogenesis, cell cycle regulation, and NK cell functionality.
- MeSH
- antifosfolipidový syndrom * imunologie patologie MeSH
- buňky NK * imunologie metabolismus MeSH
- modely nemocí na zvířatech * MeSH
- myši MeSH
- placenta * metabolismus patologie MeSH
- proliferace buněk MeSH
- stanovení celkové genové exprese MeSH
- těhotenství MeSH
- transkriptom MeSH
- trofoblasty metabolismus patologie imunologie MeSH
- uterus * patologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The use of nanoparticles as a delivery system for a specific antigen could solve many limitations of mucosal vaccine applications, such as low immunogenicity, or antigen protection and stabilization. In this study, we tested the ability of nasally administered chitosan nanoparticles loaded with glycoprotein B of murine cytomegalovirus to induce an immune response in an animal model. The choice of chitosan nanoparticle type was made by in vitro evaluation of sorption efficiency and antigen release. Three types of chitosan nanoparticles were prepared: crosslinked with tripolyphosphate, coated with hyaluronic acid, and in complex with polycaprolactone. The hydrodynamic size of the nanoparticles by dynamic light scattering, zeta potential, Fourier transform infrared spectroscopy, scanning electron microscopy, stability, loading efficiency, and release kinetics with ovalbumin were evaluated. Balb/c mice were immunized intranasally using the three-dose protocol with nanoparticles, gB, and adjuvants Poly(I:C) and CpG ODN. Subsequently, the humoral and cell-mediated antigen-specific immune response was determined. On the basis of the properties of the tested nanoparticles, the cross-linked nanoparticles were considered optimal for further investigation. The results show that nanoparticles with Poly(I:C) and with gB alone raised IgG antibody levels above the negative control. In the case of mucosal IgA, only gB alone weakly induced the production of IgA antibodies compared to saline-immunized mice. The number of activated cells increased slightly in mice immunized with nanoparticles and gB compared to those immunized with gB alone or to negative control. The results demonstrated that chitosan nanoparticles could have potential in the development of mucosal vaccines.
- MeSH
- adjuvancia imunologická MeSH
- aplikace intranazální MeSH
- chitosan * chemie MeSH
- glykoproteiny MeSH
- imunizace MeSH
- imunoglobulin A MeSH
- Muromegalovirus * MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nanočástice * chemie MeSH
- slizniční imunita MeSH
- vakcíny * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH