CssRS is a two-component system that plays a pivotal role in mediating the secretion stress response in Bacillus subtilis. This system upregulates the synthesis of membrane-bound HtrA family proteases that cope with misfolded proteins that accumulate within the cell envelope as a result of overexpression or heat shock. Recent studies have shown the induction of CssRS-regulated genes in response to cell envelope stress. We investigated the induction of the CssRS-regulated htrA promoter in the presence of different cell wall- and membrane-active substances and observed induction of the CssRS-controlled genes by glycopeptides (vancomycin and teicoplanin), polymyxins B and E, certain β-lactams, and detergents. Teicoplanin was shown to elicit remarkably stronger induction than vancomycin and polymyxin B. Teicoplanin and polymyxin B induced the spxO gene expression in a CssRS-dependent fashion, resulting in increased activity of Spx, a master regulator of disulfide stress in Bacillus subtilis. The CssRS signaling pathway and Spx activity were demonstrated to be involved in Bacillus subtilis resistance to teicoplanin and polymyxin B.
- MeSH
- antibakteriální látky * farmakologie MeSH
- Bacillus subtilis * genetika účinky léků metabolismus MeSH
- bakteriální proteiny * genetika metabolismus MeSH
- polymyxin B * farmakologie MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese u bakterií * účinky léků MeSH
- signální transdukce MeSH
- teikoplanin * farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
Investigation determines the beneficial effect of bergaptol against gestational diabetes (GD). Gestational diabetes was induced in female rats and treated them with bergaptol 20 and 40 mg/kg for eighteen days. Effect of bergaptol was assessed on blood glucose and insulin level in GD rat. Inflammatory mediators and oxidative stress parameters were also assessed in GD rats. Moreover, mRNA expression of INSR, NF-kappaB, Akt and GSK-3beta were assessed in the GD rats by qRT-PCR method. In silico network pharmacology study was performed, along with gene ontology and egg pathway to assessed the targets of bergaptol, molecular docking study was also performed for the confirmation of possible pathway involved in the management of GD. Blood glucose and insulin level was significantly reduces in the blood bergaptol treated group than GD group of rats. Treatment with bergaptol ameliorates the altered level of mediators of inflammation and oxidative stress parameters in GD rats. There was significant reduction in the mRNA expression of NF-kappaB and GSK-3beta and increase in expression of INSR and Akt in the tissue homogenate of bergaptol treated GD rats. Docking study shows effective binding strength of bergaptol individually with INSR, NF-kappaB, Akt and GSK-3beta-protein targets. In conclusion, data of investigation suggest that bergaptol improves the sensitivity of insulin receptor in GD, as it reduces parameters of oxidative stress and inflammatory mediators by regulating INSR/NF-kappaB/Akt/GSK-3beta pathway. Key words Gestational diabetes, Bergaptol, Insulin resistance, Inflammation, Oxidative stress.
- MeSH
- experimentální diabetes mellitus * farmakoterapie metabolismus MeSH
- gestační diabetes * farmakoterapie metabolismus MeSH
- inzulinová rezistence * fyziologie MeSH
- kinasa glykogensynthasy 3beta metabolismus MeSH
- krevní glukóza metabolismus účinky léků MeSH
- krysa rodu rattus MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar MeSH
- receptor inzulinu metabolismus MeSH
- signální transdukce účinky léků MeSH
- simulace molekulového dockingu * MeSH
- těhotenství MeSH
- zánět farmakoterapie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
To explore the effects and underlying mechanisms of Mdivi-1 on three common clinical models of acute kidney injury (AKI). Three common AKI cell models were constructed, classified into the control group (human renal tubular epithelial cells [HK-2] cells), the Iohexol group (HK-2 cells treated with Iohexol), the Genta group (HK-2 cells treated with Gentamicin), and the Cis group (HK-2 cells treated with Cisplatin). To explore the optimal protective concentration of Mdivi-1 for each AKI cell model, the experimental design consisted of the following seven groups: the control group (HK-2 cells cultured in medium), three injury groups (HK-2 cells subjected to Iohexol, Gentamicin, or Cisplatin), and the corresponding protection groups (with a certain concentration of Mdivi-1 added to each injury group). Cellular survival and apoptosis, reactive oxygen species (ROS) levels, and the expression of recombinant Sirtuin 3 (SIRT3) in each group were measured. Mitochondrial fission and fusion dynamics in cells were observed under an electron microscope. To explore relevant pathways, the changes in relevant pathway proteins were analyzed through Western blotting. The half maximal inhibitory concentration (IC50) values were 150.06 mgI/ml at 6 h in the Iohexol group, 37.88 mg/ml at 24 h in the Gentamicin group, and 13.48 microM at 24 h in the Cisplatin group. Compared with the control group, the three injury groups showed increased cell apoptosis rates and higher expressions of apoptotic proteins in HK-2 cells, with an accompanying decrease in cell migration. After the addition of corresponding concentrations of Mdivi-1, the optimal concentrations were 3 μM in the Iohexo-3 group, 1 microM in the Genta-1 group, and 5 μM in the Cis-5 group, HK-2 cells showed the highest survival rate, reduced apoptosis, decreased mitochondrial ROS and SIRT3 expression, and reduced mitochondrial fission and autophagy when compared with each injury group. Further verification with Western blot analysis after the addition of Mdivi-1 revealed a reduction in the expressions of mitochondrial fission proteins DRP1, Nrf2, SIRT3, Caspase-3, Jun N-terminal Kinase (JNK)/P-JNK, NF-kappaB, Bcl2, and autophagic protein P62, as well as reduced ROS levels. Mdivi-1 had protective effects on the three common AKI cell models by potentially reducing mitochondrial fission in cells and inhibiting the production of ROS through the mediation of the NF- B/JNK/SIRT3 signaling pathway, thereby exerting protective effects. Key words AKI, Cisplatin, Gentamicin, Iohexol, Mdivi-1.
- MeSH
- akutní poškození ledvin * metabolismus patologie farmakoterapie MeSH
- apoptóza účinky léků MeSH
- buněčné linie MeSH
- lidé MeSH
- MAP kinasový signální systém účinky léků fyziologie MeSH
- mitochondriální dynamika * účinky léků fyziologie MeSH
- NF-kappa B * metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce * účinky léků MeSH
- sirtuin 3 * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
To investigate the impact of hyperbaric oxygen therapy (HBOT) on the cognitive function of mice with Alzheimer's disease (AD), while also identifying the cellular pathways associated with autophagy involved in the treatment. Twenty-four APP/PSl double transgenic mice were randomly assigned to either Group A or Group B, while another 24 C57 mice were randomly allocated to Group C or Group D. HBOT was administered to mice in Group B and Group D, and the Morris water maze test was used to assess changes in mice behavior. Histological examination using hematoxylin and eosin staining was conducted to observe pathological alterations in the hippocampus of the mice brain tissue. Polymerase chain reaction (PCR) was employed to analyze autophagy-related gene pathways in the hippocampus of the mice. Following HBOT, mice in Group B exhibited a significant reduction in escape latency and a notable increase in residence time within the target quadrant compared with Group A (P<0.05), as well as Group C and Group D (P<0.01). The hippocampal neurons in Group A and Group B mice exhibited disorganized arrangements, characterized by pyknosis and margination. Conversely, neurons in Group C displayed orderly arrangements, retaining intact structures with round nuclei demonstrating clear nuclear staining and normal morphology. The cellular morphology of mice in Group D remained unaffected. PCR analysis revealed no notable disparity in autophagy-related gene expression between Group A and Group C. However, the expression levels of five genes including Tgfb1, Mapk14, Bid, Atg7, and Akt1, were significantly elevated in Group B compared to Group A. HBOT has the potential to improve the cognitive function in mice modeled with AD. This improvement of cognitive function appears to be mediated by the up-regulation of autophagy-related genes, specifically Tgfb1, Mapk14, Bid, Atg7, and Akt1. These results indicate that HBOT may offer a therapeutic strategy for treating AD by enhancing autophagy mechanisms. Key words Alzheimer's disease, Autophagy, Hyperbaric oxygen, Morris water maze, PCR.
- MeSH
- Alzheimerova nemoc * terapie metabolismus genetika psychologie MeSH
- autofagie * fyziologie MeSH
- hipokampus metabolismus patologie MeSH
- hyperbarická oxygenace * MeSH
- kognice * fyziologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL * MeSH
- myši transgenní * MeSH
- myši MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Berberine (BBR), a small molecule protoberberine isoquinoline alkaloid, is easy to cross the blood-brain barrier and is a potential drug for neurodegenerative diseases. Here, we explored the role and molecular mechanism of BBR in Alzheimer's disease (AD) progression. Weighted gene co-expression network analysis (WGCNA) was conducted to determine AD pathology-associated gene modules and differentially expressed genes (DEGs) were also identified. GO and KEGG analyses were performed for gene function and signaling pathway annotation. Cell counting kit-8 (CCK8) assay was applied to analyze cell viability. Immunofluorescence (IF) staining assay was conducted to measure the levels of polarization markers. The production of inflammatory cytokines was analyzed by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) were detected using a ROS detection kit and a MMP Detection Kit (JC-1), respectively. AD pathology-associated DEGs were applied for GO function annotation and KEGG enrichment analysis, and the results uncovered that AD pathology was related to immune and inflammation. Lipopolysaccharide (LPS) exposure induced the M1 phenotype of microglia, and BBR suppressed LPS-induced M1 polarization and induced microglia toward M2 polarization. Through co-culture of microglia and neuronal cells, we found that BBR exerted a neuro-protective role by attenuating the injury of LPS-induced HMC3 on SH-SY5Y cells. Mechanically, BBR switched the M1/M2 phenotypes of microglia by activating PI3K-AKT signaling. In summary, BBR protected neuronal cells from activated microglia-mediated neuro-inflammation by switching the M1/M2 polarization in LPS-induced microglia via activating PI3K-AKT signaling. Key words Alzheimer's Disease, Berberine, Microglia polarization, Neuroinflammation, PI3K-AKT signaling.
- MeSH
- Alzheimerova nemoc * metabolismus farmakoterapie patologie MeSH
- berberin * farmakologie terapeutické užití MeSH
- fosfatidylinositol-3-kinasy * metabolismus MeSH
- lidé MeSH
- mikroglie * účinky léků metabolismus MeSH
- myši MeSH
- neuroprotektivní látky * farmakologie MeSH
- polarita buněk účinky léků MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- signální transdukce * účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hydrogen sulfide (H2S) is a gas neurotransmitter that is synthesized in various mammalian tissues including vascular tissues and regulates vascular tone. The aim of this study is to investigate whether the endogenous L-cysteine/H2S pathway is impaired due to aging and endothelial denudation in mouse isolated thoracic aorta. For this purpose, young (3-4 months) and old (23-25 months) mice were used in the experiments. The effects of aging and endothelium on endogenous and exogenous H2S-induced vasorelaxation were investigated by cumulative L-cysteine-(1 microM-10 mM) and NaHS-(1 microM-3 mM) induced vasorelaxations, respectively. The L-cysteine-induced relaxations were reduced in old mice aorta compared to the young mice. Also, vasorelaxant responses to L-cysteine (1 microM-10 mM) were reduced on aorta rings with denuded-endothelium of young and old mice. However, the relaxation responses to NaHS were not altered by age or endothelium denudation. The loss of staining of CSE in the endothelial layer was observed in old thoracic aorta. Ach-induced (1-30 microM) relaxation almost abolished in endothelium-denuded rings from both mice group. Also, relaxation Ach reduced in intact endothelium tissue of old mice aorta. In conclusion, the vasorelaxant responses to L-cysteine but not NaHS decreased and the protein expression of CSE reduced in old thoracic aorta rings consistent with a decrease in H2S concentration with aging and endothelium damage, suggesting that aging may be lead to decrease in enzyme expression and H2S signaling system due to endothelium damage in mouse thoracic aorta. Key words Aging, Hydrogen sulfide, L-cysteine, Endothelium, Thoracic aorta.
- MeSH
- aorta thoracica * účinky léků metabolismus fyziologie MeSH
- cévní endotel * metabolismus účinky léků MeSH
- cystein metabolismus farmakologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- signální transdukce MeSH
- stárnutí * metabolismus MeSH
- sulfan * metabolismus MeSH
- vazodilatace * účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hemolysis and eryptosis contribute to anemia encountered in patients undergoing chemotherapy. Eicosapentaenoic acid (EPA) is an omega-3 dietary fatty acid that has anticancer potential by inducing apoptosis in cancer cells, but its effect on the physiology and lifespan of red blood cells (RBCs) is understudied. Human RBCs were exposed to anticancer concentrations of EPA (10-100 ?M) for 24 h at 37 °C. Acetylcholinesterase (AChE) activity and hemolysis were measured by colorimetric assays whereas annexin-V-FITC and forward scatter (FSC) were employed to identify eryptotic cells. Oxidative stress was assessed by H2DCFDA and intracellular Ca2+ was measured by Fluo4/AM. EPA significantly increased hemolysis and K+ leakage, and LDH and AST activities in the supernatants in a concentration-dependent manner. EPA also significantly increased annexin-V-FITC-positive cells and Fluo4 fluorescence and decreased FSC and AChE activity. A significant reduction in the hemolytic activity of EPA was noted in the presence extracellular isosmotic urea, 125 mM KCl, and polyethylene glycol 8000 (PEG 8000), but not sucrose. In conclusion, EPA stimulates hemolysis and eryptosis through Ca2+ buildup and AChE inhibition. Urea, blocking KCl efflux, and PEG 8000 alleviate the hemolytic activity of EPA. The anticancer potential of EPA may be optimized using Ca2+ channel blockers and chelators to minimize its toxicity to off-target tissue. Keywords: EPA, Eryptosis, Hemolysis, Calcium, Anticancer.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory * farmakologie MeSH
- eryptóza účinky léků MeSH
- erytrocytární membrána * účinky léků metabolismus MeSH
- erytrocyty účinky léků metabolismus MeSH
- fosfatidylseriny * metabolismus MeSH
- hemolýza * účinky léků MeSH
- kyselina eikosapentaenová * farmakologie MeSH
- lidé MeSH
- vápník metabolismus MeSH
- vápníková signalizace * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
An excessive increase in reactive oxygen species (ROS) levels is one of the main causes of mitochondrial dysfunction. However, when ROS levels are maintained in balance with antioxidant mechanisms, ROS fulfill the role of signaling molecules and modulate various physiological processes. Recent advances in mitochondrial bioenergetics research have revealed a significant interplay between mitochondrial peroxiredoxins (PRDXs) and monoamine oxidase-A (MAO-A) in regulating ROS levels. Both proteins are associated with hydrogen peroxide (H2O2), MAO-A as a producer and PRDXs as the primary antioxidant scavengers of H2O2. This review focuses on the currently available knowledge on the function of these proteins and their interaction, highlighting their importance in regulating oxidative damage, apoptosis, and metabolic adaptation in the heart. PRDXs not only scavenge excess H2O2, but also act as regulatory proteins, play an active role in redox signaling, and maintain mitochondrial membrane integrity. Overexpression of MAO-A is associated with increased oxidative damage, leading to mitochondrial dysfunction and subsequent progression of cardiovascular diseases (CVD), including ischemia/reperfusion injury and heart failure. Considering the central role of oxidative damage in the pathogenesis of many CVD, targeting PRDXs activation and MAO-A inhibition may offer new therapeutic strategies aimed at improving cardiac function under conditions of pathological load related to oxidative damage. Keywords: Mitochondria, Peroxiredoxin, Monoamine oxidase-A, Reactive oxygen species, Cardioprotective signaling.
- MeSH
- lidé MeSH
- monoaminoxidasa * metabolismus MeSH
- oxidační stres MeSH
- peroxiredoxiny * metabolismus MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- signální transdukce * MeSH
- srdeční mitochondrie metabolismus enzymologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.
- MeSH
- beta-katenin metabolismus genetika MeSH
- HEK293 buňky MeSH
- lidé MeSH
- multimerizace proteinu MeSH
- protein dishevelled * metabolismus genetika MeSH
- signální dráha Wnt * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH