Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
- MeSH
- fenotyp * MeSH
- glioblastom * patologie genetika metabolismus MeSH
- invazivní růst nádoru * genetika MeSH
- lidé MeSH
- membránové proteiny MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory mozku * patologie genetika metabolismus MeSH
- pohyb buněk genetika fyziologie MeSH
- proteiny nervové tkáně metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Triple negative breast cancer (TNBC) is a particularly aggressive and difficult-to-treat subtype of breast cancer that requires the development of novel therapeutic strategies. To pave the way for such developments it is essential to characterize new molecular players in TNBC. MicroRNAs (miRNAs) constitute interesting candidates in this regard as they are frequently deregulated in cancer and contribute to numerous aspects of carcinogenesis. METHODS AND RESULTS: Here, we discovered that miR-4649-5p, a miRNA yet uncharacterized in breast cancer, is associated with better overall survival of TNBC patients. Ectopic upregulation of the otherwise very low endogenous expression levels of miR-4646-5p significantly decreased the growth, proliferation, and migration of TNBC cells. By performing whole transcriptome analysis and physical interaction assays, we were able to identify the phosphatidylinositol phosphate kinase PIP5K1C as a direct target of miR-4649-5p. Downregulation or pharmacologic inhibition of PIP5K1C phenocopied the growth-reducing effects of miR-4649-5p. PIP5K1C is known to play an important role in migration and cell adhesion, and we could furthermore confirm its impact on downstream PI3K/AKT signaling. Combinations of miR-4649-5p upregulation and PIP5K1C or AKT inhibition, using the pharmacologic inhibitors UNC3230 and capivasertib, respectively, showed additive growth-reducing effects in TNBC cells. CONCLUSION: In summary, miR-4649-5p exerts broad tumor-suppressive effects in TNBC and shows potential for combined therapeutic approaches targeting the PIP5K1C/PI3K/AKT signaling axis.
- MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- pohyb buněk genetika MeSH
- proliferace buněk genetika MeSH
- protoonkogenní proteiny c-akt genetika metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- triple-negativní karcinom prsu * farmakoterapie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The TGF-β signaling pathway is involved in numerous cellular processes, and its deregulation may result in cancer development. One of the key processes in tumor progression and metastasis is epithelial to mesenchymal transition (EMT), in which TGF-β signaling plays important roles. Recently, AGR2 was identified as a crucial component of the cellular machinery responsible for maintaining the epithelial phenotype, thereby interfering with the induction of mesenchymal phenotype cells by TGF-β effects in cancer. Here, we performed transcriptomic profiling of A549 lung cancer cells with CRISPR-Cas9 mediated AGR2 knockout with and without TGF-β treatment. We identified significant changes in transcripts associated with focal adhesion and eicosanoid production, in particular arachidonic acid metabolism. Changes in transcripts associated with the focal adhesion pathway were validated by RT-qPCR of COL4A1, COL4A2, FLNA, VAV3, VEGFA, and VINC mRNAs. In addition, immunofluorescence showed the formation of stress fibers and vinculin foci in cells without AGR2 and in response to TGF-β treatment, with synergistic effects observed. These findings imply that both AGR2 downregulation and TGF-β have a role in focal adhesion formation and cancer cell migration and invasion. Transcripts associated with arachidonic acid metabolism were downregulated after both AGR2 knockout and TGF-β treatment and were validated by RT-qPCR of GPX2, PTGS2, and PLA2G4A. Since PGE2 is a product of arachidonic acid metabolism, its lowered concentration in media from AGR2-knockout cells was confirmed by ELISA. Together, our results demonstrate that AGR2 downregulation and TGF-β have an essential role in focal adhesion formation; moreover, we have identified AGR2 as an important component of the arachidonic acid metabolic pathway.
- MeSH
- cyklooxygenasa 2 genetika MeSH
- epitelo-mezenchymální tranzice * genetika MeSH
- kyselina arachidonová MeSH
- nádorové buněčné linie MeSH
- pohyb buněk genetika MeSH
- prostaglandiny E MeSH
- regulace genové exprese u nádorů * MeSH
- transformující růstový faktor beta genetika MeSH
- vinkulin genetika MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Renal cell carcinoma is difficult to diagnose and unpredictable in disease course and severity. There are no specific biomarkers for diagnosis and prognosis estimation feasible in clinical practice. Long non-coding RNAs (lncRNAs) have emerged as potent regulators of gene expression in recent years. Aside from their cellular role, their expression patterns could be used as a biomarker of ongoing pathology. METHODS: In this work, we used next-generation sequencing for global lncRNA expression profiling in tumor and non-tumor tissue of RCC patients. The four candidate lncRNAs have been further validated on an independent cohort. PVT1, as the most promising lncRNA, has also been studied using functional in vitro tests. RESULTS: Next-generation sequencing showed significant dysregulation of 1163 lncRNAs; among them top 20 dysregulated lncRNAs were AC061975.7, AC124017.1, AP000696.1, AC148477.4, LINC02437, GATA3-AS, LINC01762, LINC01230, LINC01271, LINC01187, LINC00472, AC007849.1, LINC00982, LINC01543, AL031710.1, and AC019197.1 as down-regulated lncRNAs; and SLC16A1-AS1, PVT1, LINC0887, and LUCAT1 as up-regulated lncRNAs. We observed statistically significant dysregulation of PVT1, LUCAT1, and LINC00982. Moreover, we studied the effect of artificial PVT1 decrease in renal cell line 786-0 and observed an effect on cell viability and migration. CONCLUSION: Our results show not only the diagnostic but also the therapeutic potential of PVT1 in renal cell carcinoma.
- MeSH
- karcinom z renálních buněk * genetika patofyziologie MeSH
- lidé MeSH
- nádorové biomarkery genetika fyziologie MeSH
- nádorové buněčné linie MeSH
- nádory ledvin * genetika patofyziologie MeSH
- pohyb buněk genetika MeSH
- proliferace buněk genetika MeSH
- regulace genové exprese u nádorů MeSH
- RNA dlouhá nekódující * genetika metabolismus fyziologie MeSH
- viabilita buněk genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Only 5% of all CRC cases are due to germline mutations in known predisposition genes, and the remaining genetic burden still has to be discovered. In this study, we performed whole-exome sequencing on six members of a Polish family diagnosed with CRC and identified a novel germline variant in the protein tyrosine kinase 7 (inactive) gene (PTK7, ENST00000230419, V354M). Targeted screening of the variant in 1705 familial CRC cases and 1674 healthy elderly individuals identified the variant in an additional familial CRC case. Introduction of this variant in HT-29 cells resulted in increased cell proliferation, migration, and invasion; it also caused down-regulation of CREB, p21 and p53 mRNA and protein levels, and increased AKT phosphorylation. These changes indicated inhibition of apoptosis pathways and activation of AKT signaling. Our study confirmed the oncogenic function of PTK7 and supported its role in genetic predisposition of familial CRC.
- MeSH
- genetická predispozice k nemoci MeSH
- inhibitor p21 cyklin-dependentní kinasy genetika MeSH
- invazivní růst nádoru genetika MeSH
- kolorektální nádory genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- molekuly buněčné adheze genetika metabolismus MeSH
- nádorový supresorový protein p53 genetika MeSH
- onkogeny MeSH
- pohyb buněk genetika MeSH
- proliferace buněk genetika MeSH
- protein vázající cAMP responzivní element genetika MeSH
- protoonkogenní proteiny c-akt genetika MeSH
- rodina MeSH
- rodokmen MeSH
- sekvenování exomu metody MeSH
- senioři MeSH
- tyrosinkinasové receptory genetika metabolismus MeSH
- zárodečné mutace genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.
- MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory kostí * patologie MeSH
- osteosarkom * patologie MeSH
- pohyb buněk genetika MeSH
- prognóza MeSH
- proliferace buněk MeSH
- regulace genové exprese u nádorů MeSH
- retrospektivní studie MeSH
- signální dráha Wnt MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Several papers have reported that calcium channel blocking drugs were associated with increased breast cancer risk and worsened prognosis. One of the most common signs of breast tumors is the presence of small deposits of calcium, known as microcalcifications. Therefore, we studied the effect of dihydropyridine nifedipine on selected calcium transport systems in MDA-MB-231 cells, originating from triple negative breast tumor and JIMT1 cells that represent a model of HER2-positive breast cancer, which possesses amplification of HER2 receptor, but cells do not response to HER2 inhibition treatment with trastuzumab. Also, we compared the effect of nifedipine on colorectal DLD1 and ovarian A2780 cancer cells. Both, inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) and type 1 sodium calcium exchanger (NCX1) were upregulated due to nifedipine in DLD1 and A2780 cells, but not in breast cancer MDA-MB-231 and JIMT1 cells. On contrary to MDA-MB-231 and JIMT1 cells, in DLD1 and A2780 cells nifedipine induced apoptosis in a concentration-dependent manner. After NCX1 silencing and subsequent treatment with nifedipine, proliferation was decreased in MDA-MB-231, increased in DLD1 cells, and not changed in JIMT1 cells. Silencing of IP3R1 revealed increase in proliferation in DLD1 and JIMT1 cells, but caused decrease in proliferation in MDA-MB-231 cell line after nifedipine treatment. Interestingly, after nifedipine treatment migration was not significantly affected in any of tested cell lines after NCX1 silencing. Due to IP3R1 silencing, significant decrease in migration occurred in MDA-MB-231 cells after nifedipine treatment, but not in other tested cells. These results support different function of the NCX1 and IP3R1 in the invasiveness of various cancer cells due to nifedipine treatment.
- MeSH
- apoptóza účinky léků genetika MeSH
- blokátory kalciových kanálů farmakologie MeSH
- inositol-1,4,5-trisfosfát - receptory genetika metabolismus MeSH
- kolorektální nádory genetika metabolismus patologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prsu genetika metabolismus patologie MeSH
- nádory vaječníků genetika metabolismus patologie MeSH
- nifedipin farmakologie MeSH
- pohyb buněk účinky léků genetika MeSH
- proliferace buněk účinky léků genetika MeSH
- protinádorové látky imunologicky aktivní farmakologie MeSH
- pumpa pro výměnu sodíku a vápníku genetika metabolismus MeSH
- receptor erbB-2 genetika metabolismus MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- RNA interference MeSH
- trastuzumab farmakologie MeSH
- triple-negativní karcinom prsu genetika metabolismus patologie MeSH
- vápníková signalizace účinky léků genetika MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The reason why a few myeloma cells egress from the bone marrow (BM) into peripheral blood (PB) remains unknown. Here, we investigated molecular hallmarks of circulating tumor cells (CTCs) to identify the events leading to myeloma trafficking into the bloodstream. After using next-generation flow to isolate matched CTCs and BM tumor cells from 32 patients, we found high correlation in gene expression at single-cell and bulk levels (r ≥ 0.94, P = 10-16), with only 55 genes differentially expressed between CTCs and BM tumor cells. CTCs overexpressed genes involved in inflammation, hypoxia, or epithelial-mesenchymal transition, whereas genes related with proliferation were downregulated in CTCs. The cancer stem cell marker CD44 was overexpressed in CTCs, and its knockdown significantly reduced migration of MM cells towards SDF1-α and their adhesion to fibronectin. Approximately half (29/55) of genes differentially expressed in CTCs were prognostic in patients with newly-diagnosed myeloma (n = 553; CoMMpass). In a multivariate analysis including the R-ISS, overexpression of CENPF and LGALS1 was significantly associated with inferior survival. Altogether, these results help understanding the presence of CTCs in PB and suggest that hypoxic BM niches together with a pro-inflammatory microenvironment induce an arrest in proliferation, forcing tumor cells to circulate in PB and seek other BM niches to continue growing.
- MeSH
- epitelo-mezenchymální tranzice genetika MeSH
- exprese genu genetika MeSH
- genetická transkripce genetika MeSH
- hypoxie genetika patologie MeSH
- kostní dřeň patologie MeSH
- lidé MeSH
- mnohočetný myelom genetika patologie MeSH
- nádorové buněčné linie MeSH
- nádorové cirkulující buňky patologie MeSH
- nádorové kmenové buňky patologie MeSH
- nádorové mikroprostředí genetika MeSH
- pohyb buněk genetika MeSH
- prognóza MeSH
- proliferace buněk genetika MeSH
- zánět genetika patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: CIP2A has been proved to play a role as an oncogene in various types of malignancies while its functionality in renal clear cell carcinoma has not been investigated. Our study aimed to investigate the role of CIP2A in renal clear cell carcinoma and to explore the possible mechanisms. METHODS: A total of 80 patients with renal clear cell carcinoma and 32 healthy people were included in the study. Expression of CIP2A was detected by qRT-PCR. CIP2A silencing renal clear cell carcinoma cell line was established. Its effects on cell proliferation and migration were verified by CCK-8 assay and Transwell cell assay, respectively. The effects of CIP2A overexpression on AKT and VEGF were investigated. RESULTS: CIP2A expression level was increased in tumor tissues compared to adjacent healthy tissues. Serum levels of CIP2A protein were higher in cancer patients than in healthy controls, and serum levels of CIP2A protein were increased with increased stage of primary tumor. Serum CIP2A protein can be used to accurately predict renal clear cell carcinoma and its prognosis. CIP2A siRNA silencing inhibited tumor cell proliferation, and treatment with Akt activator reduced this inhibitory effect. CIP2A siRNA silencing decreased the expression level of VEGF and phosphorylation levels of AKT in renal clear cell carcinoma cells, while AKT activator treatment showed no significant effects on CIP2A expression. CONCLUSION: Downregulation of CIP2A can inhibit cancer cell proliferation and vascularization in renal clear cell carcinoma through inactivation of the Akt pathway and its downstream VEGF.
- MeSH
- autoantigeny genetika MeSH
- dospělí MeSH
- genový knockdown MeSH
- intracelulární signální peptidy a proteiny genetika MeSH
- karcinom z renálních buněk krevní zásobení genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mladý dospělý MeSH
- nádorové buněčné linie MeSH
- nádory ledvin krevní zásobení genetika patologie MeSH
- patologická angiogeneze genetika MeSH
- pohyb buněk genetika MeSH
- proliferace buněk genetika MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- vaskulární endoteliální růstový faktor A metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Cells attaching to the extracellular matrix spontaneously acquire front-rear polarity. This self-organization process comprises spatial activation of polarity signaling networks and the establishment of a protruding cell front and a non-protruding cell rear. Cell polarization also involves the reorganization of cell mass, notably the nucleus that is positioned at the cell rear. It remains unclear, however, how these processes are regulated. Here, using coherence-controlled holographic microscopy (CCHM) for non-invasive live-cell quantitative phase imaging (QPI), we examined the role of the focal adhesion kinase (FAK) and its interacting partner Rack1 in dry mass distribution in spreading Rat2 fibroblasts. We found that FAK-depleted cells adopt an elongated, bipolar phenotype with a high central body mass that gradually decreases toward the ends of the elongated processes. Further characterization of spreading cells showed that FAK-depleted cells are incapable of forming a stable rear; rather, they form two distally positioned protruding regions. Continuous protrusions at opposite sides results in an elongated cell shape. In contrast, Rack1-depleted cells are round and large with the cell mass sharply dropping from the nuclear area towards the basal side. We propose that FAK and Rack1 act differently yet coordinately to establish front-rear polarity in spreading cells.
- MeSH
- buněčná adheze genetika fyziologie MeSH
- buněčné linie MeSH
- fibroblasty cytologie metabolismus MeSH
- fokální adhezní tyrosinkinasy genetika metabolismus MeSH
- krysa rodu rattus MeSH
- mikroskopie fázově kontrastní MeSH
- pohyb buněk genetika fyziologie MeSH
- polarita buněk genetika fyziologie MeSH
- receptory pro aktivovanou kinasu C genetika metabolismus MeSH
- RNA interference MeSH
- tvar buňky genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH