Galectins are small human proteins participating in inflammation processes, immune response, and cancerogenesis. Tandem-repeat galectins comprising Gal-4, Gal-8, and Gal-9 are a vital yet less studied part of the galectin fingerprint in cancer-related processes. The present work studies a library of prepared multivalent neo-glycoproteins decorated with poly-N-acetyllactosamine and human-milk-type oligosaccharides as ligands of this underexplored family of tandem-repeat galectins. A thorough binding evaluation by ELISA and biolayer interferometry was complemented with a detailed epitope mapping both from the galectin and the glycoconjugate viewpoints by nuclear magnetic resonance. The found interactions in the galectin binding site were correlated to in silico data from molecular modeling. The present work reveals pioneer information on the binding of tandem-repeat galectins to multivalent glycoconjugates carrying complex carbohydrate ligands and represents an invaluable starting point for the development of new high-affinity tailored ligands of tandem-repeat galectins, needed both for diagnosis and therapy.
- MeSH
- galektiny * chemie metabolismus MeSH
- glykoproteiny * chemie metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- mateřské mléko * chemie MeSH
- oligosacharidy * chemie metabolismus MeSH
- tandemové repetitivní sekvence MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- galektiny * MeSH
- glykoproteiny * MeSH
- ligandy MeSH
- oligosacharidy * MeSH
- poly-N-acetyllactosamine MeSH Prohlížeč
- polysacharidy MeSH
BACKGROUND: Trauma is a leading global cause of mortality, and systemic inflammatory response syndrome (SIRS) remains a significant complication, contributing to adverse outcomes. Neutrophils, as first responders to tissue injury, undergo substantial phenotypic and functional changes following trauma. This study investigates neutrophil subpopulations defined by CD16 and CD62L expression in trauma patients, focusing on their correlation with clinical biomarkers, trauma severity, and functional properties. METHODS: We included 50 non-infectious trauma patients, categorized into SIRS and Non-SIRS groups, and 43 elective surgery patients as controls. Neutrophil subsets were analyzed at two time points (TP1 and TP2) using flow cytometry. Functional assays evaluated phagocytosis, oxidative burst, mitochondrial function, and degranulation. Correlations between neutrophil subpopulations and clinical markers, including lactate, creatine kinase, Injury Severity Score, and Trauma and Injury Severity Score, were examined. RESULTS: Patients with SIRS exhibited higher proportions of banded neutrophils and CD16lowCD62Llow neutrophils at TP1, alongside reduced levels of mature neutrophils. Elevated lactate and creatine kinase levels positively correlated with banded neutrophils and CD16lowCD62Llow neutrophils, while negatively correlating with mature neutrophils CD16highCD62Lhigh and hypersegmented neutrophils CD16highCD62Llow. Hypersegmented neutrophils were more prevalent in Non-SIRS patients at TP1 and in SIRS patients at TP2. Banded neutrophils showed a positive correlation with Injury Severity Score and an inverse correlation with Trauma and Injury Severity Score (TRISS), whereas hypersegmented neutrophils were negatively associated with ISS and positively correlated with TRISS. These correlations likely reflect the pro-inflammatory role of banded neutrophils and the inflammation-resolving function of hypersegmented neutrophils. CD16lowCD62Llow neutrophils displayed impaired phagocytosis, oxidative burst, and degranulation capacity, indicating functional deficiencies. CONCLUSION: This study highlights the dynamic changes in neutrophil subpopulations in trauma and their association with systemic inflammation and clinical severity. Increased banded neutrophils correlate with SIRS and metabolic stress, whereas hypersegmented neutrophils may contribute to resolving inflammation. CD16lowCD62Llow neutrophils exhibit functional impairments, warranting further investigation. Monitoring neutrophil subpopulations could aid in identifying trauma patients at risk for non-infectious SIRS and guide therapeutic interventions.
- Klíčová slova
- ISS, SIRS, TRISS, creatine kinase, lactate, neutrophils, trauma,
- MeSH
- biologické markery MeSH
- dospělí MeSH
- fagocytóza MeSH
- L-selektin metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- neutrofily * imunologie metabolismus MeSH
- rány a poranění * imunologie krev MeSH
- receptory IgG metabolismus MeSH
- respirační vzplanutí MeSH
- senioři MeSH
- syndrom systémové zánětlivé reakce * imunologie etiologie krev MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- L-selektin MeSH
- receptory IgG MeSH
Acute manifestations of ischemic heart disease are among the most serious and fatal consequences of atherosclerotic processes. In this study, we hypothesized that a soluble proprotein convertase subtilisin/kexin type 9 (PCSK9), soluble bone morphogenetic protein 4 (BMP-4), soluble E-selectin (sE-selectin), soluble endoglin (sENG) and soluble endocan (Endocan) would differ from healthy controls in myocardial infarction (MI) patients admitted to the hospital without any previous history of cardiovascular disease and with no cardioprotective drugs taken before admission. The study was conducted using a cross-sectional design. We analyzed data from 79 patients (mean age 54.1 ± 8.9, 18% of women) admitted for the first manifestation of MI and with no history of cardioprotective treatment use before the event. As a control group, we analyzed 17 age-matched healthy volunteers (mean age 51.5 ± 8.6, 47% of women). In addition to routinely obtaining clinical and laboratory data, we analyzed plasma concentrations of the aforementioned biomarkers using ELISA and Luminex analyses. Patients with MI did not differ from healthy controls in total cholesterol, LDL, non-HDL, and triglyceride levels. PCSK9, BMP-4, and sE-selectin levels did not differ significantly between the MI and the control group. Patients with MI had significantly higher sENG and Endocan levels than the control group. In addition, levels of sENG were significantly higher in patients with higher body mass index (BMI) and in smokers. We demonstrated that sENG could serve as a biomarker reflecting endothelial dysfunction in MI patients without prior treatment for cardiovascular risk factors.
- Klíčová slova
- myocardial infarction, soluble endocan., soluble endoglin,
- MeSH
- biologické markery krev MeSH
- cévní endotel * patofyziologie patologie metabolismus MeSH
- dospělí MeSH
- E-selektin krev MeSH
- endoglin * krev MeSH
- infarkt myokardu * krev patologie patofyziologie MeSH
- kostní morfogenetický protein 4 krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové proteiny krev MeSH
- proproteinkonvertasa subtilisin/kexin typu 9 krev MeSH
- proteoglykany krev MeSH
- průřezové studie MeSH
- retrospektivní studie MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- biologické markery MeSH
- BMP4 protein, human MeSH Prohlížeč
- E-selektin MeSH
- endoglin * MeSH
- ENG protein, human MeSH Prohlížeč
- ESM1 protein, human MeSH Prohlížeč
- kostní morfogenetický protein 4 MeSH
- nádorové proteiny MeSH
- PCSK9 protein, human MeSH Prohlížeč
- proproteinkonvertasa subtilisin/kexin typu 9 MeSH
- proteoglykany MeSH
- SELE protein, human MeSH Prohlížeč
INTRODUCTION: Chitinase-3-like protein 1 (CHI3L1) is a glycoprotein implicated in various neurological conditions. It is associated with neuroinflammation and tissue remodeling. The study aimed to validate the reference interval (RI) of serum (S) CHI3L1 in a control group, to correlate S CHI3L1 values with other biomarkers of neurodegenerative damage, and to estimate the diagnostic accuracy of S CHI3L1. METHODS: Samples from 108 healthy volunteers were used to estimate the S CHI3L1 RI. For the comparison, we used cerebrospinal fluid (CSF) and serum (S) samples from 121 patients with cognitive disorders, and cognitive deterioration was assessed using the Mini-Mental State Examination (MMSE). ELISA assays were used to determine the S CHI3L1, CSF, and S neurofilament light chain (NfL) levels; CSF and plasma β-amyloid peptide42; CSF and plasma β-amyloid peptide40; CSF total tau protein; CSF phosphorylated tau protein; and CSF alpha-synuclein. RESULTS: The estimated RI of S CHI3L1 was 14.44 to 63.11 µg/L. The cut-off value of S CHI3L1 was 34.37 µg/L. ROC analysis showed that S CHI3L1 has 81.4% sensitivity and 76.9% specificity. We found a moderate Spearman's rank correlation coefficient between the S CHI3L1 and age (rS = 0.486; p < 0.001) and between S CHI3L1 and S NfL (rS = 0.489; p < 0.001) in all groups. The Kruskal-Wallis test showed a significant overall difference in S CHI3L1 among diagnostic groups (p = 0.013). S CHI3L1 and CSF NfL had statistically significant effects on MMSE values (multiple R2 was 0.431). CONCLUSIONS: Our results suggest that S CHI3L1 reflects the severity of cognitive deficits assessed by MMSE. It can be used as a supportive biomarker in neurodegenerative diseases.
- Klíčová slova
- Alzheimer's disease, CHI3L1, biomarkers, dementia,
- MeSH
- alfa-synuklein mozkomíšní mok krev MeSH
- amyloidní beta-protein krev mozkomíšní mok MeSH
- biologické markery krev mozkomíšní mok MeSH
- dospělí MeSH
- kognitivní dysfunkce * krev mozkomíšní mok diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- neurofilamentové proteiny mozkomíšní mok krev MeSH
- pohybové poruchy * krev mozkomíšní mok diagnóza MeSH
- protein CHI3L1 * krev mozkomíšní mok MeSH
- proteiny tau mozkomíšní mok krev MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- alfa-synuklein MeSH
- amyloidní beta-protein MeSH
- biologické markery MeSH
- CHI3L1 protein, human MeSH Prohlížeč
- neurofilament protein L MeSH Prohlížeč
- neurofilamentové proteiny MeSH
- protein CHI3L1 * MeSH
- proteiny tau MeSH
Gangliosides, sialylated glycosphingolipids abundant in the nervous system, play crucial roles in neurotransmission, interaction with regulatory proteins, cell-cell recognition, and signaling. Altered gangliosides expression has been correlated with pathological processes, including cancer, inflammatory disorders, and autoimmune diseases. Gangliosides are important endogenous ligands of Siglecs (Sialic acid-binding immunoglobulin-type lectins), I-type lectins mostly expressed by immune cells, that specifically recognize sialylated glycans. Siglec-7, an inhibitory immune receptor on human natural killer cells, represents a potential target for tumor immunotherapy. Notably, the expression of Siglec-7 ligands is high in various cancers, such as pancreatic cancer and melanoma and lead to tumor immune evasion. Siglec-7 binds the disialylated ganglioside GD3, a tumor-associated antigen overexpressed on cancer cells to suppress immune responses. Using a combination of structural biology techniques, including Nuclear Magnetic Resonance (NMR), biophysical, and computational methods, the binding of Siglec-7 to GD3 and Gb3 derivatives is investigated, revealing the importance of ligand conformation in modulating binding energetics and affinity. The greater flexibility of Gb3 derivatives appears to negatively impact binding entropy, leading to lower affinity compared to GD3. A thorough understanding of these interactions could contribute to elucidating molecular mechanisms of cancer immune evasion and facilitate the development of ganglioside-based diagnostic and therapeutic strategies for cancer.
- Klíčová slova
- NMR, gangliosides, siglec‐7, structural biology,
- MeSH
- antigeny diferenciační myelomonocytární * metabolismus chemie MeSH
- gangliosidy * metabolismus chemie MeSH
- lektiny * metabolismus chemie MeSH
- lidé MeSH
- ligandy MeSH
- magnetická rezonanční spektroskopie metody MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny diferenciační myelomonocytární * MeSH
- gangliosidy * MeSH
- lektiny * MeSH
- ligandy MeSH
- SIGLEC7 protein, human MeSH Prohlížeč
BACKGROUND: Oxidative stress and inflammation are considered predictors of diseases associated with aging. Markers of oxidative stress, inflammation, and endothelial activation were investigated in people with HIV on antiretroviral treatment to determine whether they had an immunosenescent phenotype that might predispose to the development of premature age-related diseases. PATIENTS AND METHODS: This study was conducted on 213 subjects with HIV. The control groups consisted of healthy HIV-negative adults. The level of oxidative stress was measured by assessing the production of malondialdehyde levels, which were detected by thiobarbituric acid reactive substance (TBARS) assay. The level of microparticles indicated the presence of inflammation and endothelial activation was measured by E-selectin levels. Significant differences were determined by appropriate statistical tests, depending on the distribution of variables. Relationships between continuous variables were quantified using Spearman's rank correlation coefficient. RESULTS: TBARS, and microparticle and E-selectin levels were significantly higher in untreated and treated subjects with HIV compared with HIV-negative controls (P<0.001). The levels of the investigated markers were not significantly different between untreated and treated patients and no significant correlation of these markers was found with CD4+ count, CD4+/CD8+ ratio, and the number of HIV-1 RNA copies. CONCLUSIONS: Elevated markers of oxidative stress, inflammatory and endothelial activation were independent of the virologic and immunologic status of people with HIV. These results support the hypothesis that residual viremia in cellular reservoirs of various tissues is a key factor related to the premature aging of the immune system and predisposition to the premature development of diseases associated with aging.
- Klíčová slova
- E-selectin, HIV suppression, microparticles, oxidative stress,
- MeSH
- biologické markery krev MeSH
- dospělí MeSH
- E-selektin * krev metabolismus MeSH
- HIV infekce * farmakoterapie imunologie metabolismus MeSH
- látky reagující s kyselinou thiobarbiturovou metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikropartikule * metabolismus MeSH
- oxidační stres * MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- E-selektin * MeSH
- látky reagující s kyselinou thiobarbiturovou MeSH
Photorhabdus laumondii is a well-known bacterium with a complex life cycle involving mutualism with nematodes of the genus Heterorhabditis and pathogenicity towards insect hosts. It provides an excellent model for studying the diverse roles of lectins, saccharide-binding proteins, in both symbiosis and pathogenicity. This study focuses on the seven-bladed β-propeller lectins of P. laumondii (PLLs), examining their biochemical properties (structure and saccharide specificity) and biological functions (gene expression, interactions with the nematode symbiont, and the host immune system response). Structural analyses revealed diverse oligomeric states among PLLs and a unique organisation of binding sites not described outside the PLL lectin family. Lectins exhibited high specificity for fucosylated and O-methylated saccharides with a significant avidity effect for multivalent ligands. Gene expression analysis across bacterial growth phases revealed that PLLs are predominantly expressed during the exponential phase. Interaction studies with the host immune system demonstrated that PLL5 uniquely induced melanisation in Galleria mellonella hemolymph. Furthermore, PLL2, PLL3, and PLL5 interfered with reactive oxygen species production in human blood cells, indicating their potential role in modulating host immune responses. Biofilm formation assays and binding studies with nematode life stages showed no significant involvement of PLLs in nematode colonization. Our findings highlight the primary role of PLLs in Photorhabdus pathogenicity rather than in symbiosis and offer valuable insight into the fascinating dynamics within the Photorhabdus-nematode-insect triparted system.
- Klíčová slova
- Photorhabdus, glycan array, lectin, nematode, structure-function study,
- MeSH
- bakteriální proteiny * chemie metabolismus genetika MeSH
- hlístice * mikrobiologie MeSH
- lektiny * chemie metabolismus genetika MeSH
- lidé MeSH
- Photorhabdus * metabolismus chemie genetika MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- lektiny * MeSH
DC-SIGN, a C-type lectin receptor expressed on immune cells, is considered a promising target for immunomodulatory and antiviral therapies. While mannose-based glycomimetics have been extensively studied as DC-SIGN ligands, fucose-based strategies remain underexplored. This study explores the fucosylation of linear alcohols and sugars using eight different fucosyl donors, aiming at designing strategies for the development of fucose-based glycomimetics targeting DC-SIGN. Four types of leaving groups and two different acyl-based protecting groups on the donors were tested. The glycosylation of 3-azidopropan-1-ol exclusively yielded the β-anomer, demonstrating high stereoselectivity. The azido group in the product is versatile, allowing for direct click chemistry reactions or reduction to an amine for further functionalization. Both types of reactions were demonstrated in a model reaction. In the glycosylation of a sugar, a disaccharide moiety of Lewis X antigen was selected as a target molecule. Only one of the eight tested fucosyl donors worked well in this reaction and provided the product in a reasonable yield. The disaccharide was also equipped with the 3-azidopropyl linker, facilitating future modifications. Finally, NMR studies confirmed compatibility of the linker with canonical Ca2+-dependent carbohydrate binding to DC-SIGN, suggesting potential for further development of fucose-based glycomimetics targeting this C-type lectin receptor.
- Klíčová slova
- DC-SIGN, Fucosyl glycosides, Glycomimetics, Glycosylation, Lewis X, NMR, l-fucose,
- MeSH
- fukosa * chemie MeSH
- glykosidy * chemie chemická syntéza farmakologie metabolismus MeSH
- glykosylace MeSH
- lektiny typu C * metabolismus antagonisté a inhibitory MeSH
- lidé MeSH
- molekulární struktura MeSH
- molekuly buněčné adheze * metabolismus antagonisté a inhibitory MeSH
- receptory buněčného povrchu * metabolismus antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DC-specific ICAM-3 grabbing nonintegrin MeSH Prohlížeč
- fukosa * MeSH
- glykosidy * MeSH
- lektiny typu C * MeSH
- molekuly buněčné adheze * MeSH
- receptory buněčného povrchu * MeSH
INTRODUCTION: The immunosuppressive roles of galectin-3 (Gal-3) in carcinogenesis make this lectin an attractive target for pharmacological inhibition in immunotherapy. Although current clinical immunotherapies appear promising in the treatment of solid tumors, their efficacy is significantly weakened by the hostile immunosuppressive tumor microenvironment (TME). Gal-3, a prominent TME modulator, efficiently subverts the elimination of cancer, either directly by inducing apoptosis of immune cells or indirectly by binding essential effector molecules, such as interferon-gamma (IFNγ). METHODS: N-(2-Hydroxypropyl)methacrylamide (HPMA)-based glycopolymers bearing poly-N-acetyllactosamine-derived tetrasaccharide ligands of Gal-3 were designed, synthesized, and characterized using high-performance liquid chromatography, dynamic light scattering, UV-Vis spectrophotometry, gel permeation chromatography, nuclear magnetic resonance, high-resolution mass spectrometry and CCK-8 assay for evaluation of glycopolymer non-toxicity. Pro-immunogenic effects of purified glycopolymers were tested by apoptotic assay using flow cytometry, competitive ELISA, and in vitro cell-free INFγ-based assay. RESULTS: All tested glycopolymers completely inhibited Gal-3-induced apoptosis of monocytes/macrophages, of which the M1 subtype is responsible for eliminating cancer cells during immunotherapy. Moreover, the glycopolymers suppressed Gal-3-induced capture of glycosylated IFNγ by competitive inhibition to Gal-3 carbohydrate recognition domain (CRD), which enables further inherent biological activities of this effector, such as differentiation of monocytes into M1 macrophages and repolarization of M2-macrophages to the M1 state. CONCLUSION: The prepared glycopolymers are promising inhibitors of Gal-3 and may serve as important supportive anti-cancer nanosystems enabling the infiltration of proinflammatory macrophages and the reprogramming of unwanted M2 macrophages into the M1 subtype.
- Klíčová slova
- carbohydrate, galectin-3, glycopolymer, interferon-gamma, monocyte, tumor microenvironment,
- MeSH
- akrylamidy chemie farmakologie MeSH
- apoptóza účinky léků MeSH
- galektin 3 * antagonisté a inhibitory MeSH
- interferon gama * metabolismus MeSH
- lidé MeSH
- makrofágy účinky léků MeSH
- monocyty * účinky léků MeSH
- nádorové mikroprostředí účinky léků MeSH
- polymery * chemie farmakologie MeSH
- protinádorové látky * farmakologie chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akrylamidy MeSH
- galektin 3 * MeSH
- galektiny MeSH
- interferon gama * MeSH
- krevní proteiny MeSH
- LGALS3 protein, human MeSH Prohlížeč
- polymery * MeSH
- protinádorové látky * MeSH
Siglec-7, an immune checkpoint receptor, has emerged as a promising target for cancer immunotherapy due to its involvement in the regulation of immune and inflammatory responses. However, while its participation in immunoediting and immune evasion is well established, understanding its biological context, relevant ligands, and associated signalling pathways remains limited. Understanding these aspects is crucial for the development of effective immunotherapies targeting Siglec-7. In this study, three expression constructs of Siglec-7 were designed, expressed, and characterised, including an analysis of the oligomeric state of its extracellular domain. The N-terminal V-set Ig carbohydrate recognition domain was also produced in an isotopically double-labelled (13C,15N) mammalian cell growth medium. Two stable constructs suitable for biophysical and structural studies were identified. These findings reveal the noncovalent dimerisation of Siglec-7, offering new insights into its possible ligand interactions, signal transduction mechanisms, or receptor/ligand clustering. The dimerisation of Siglec-7 may be essential to achieve multivalent, high-avidity interactions with glycoconjugates, which may result in enhanced or alternative signalling processes within the NK cell immune synapse. In addition, a detailed protocol for generating double-labelled Siglec-7 in HEK293 cells, which may apply to other proteins under similar conditions, was described. These findings contribute to a better understanding of the biophysical and structural properties of Siglec-7 and are key to the design of more precise and effective cancer immunotherapies targeting Siglec-7.
- Klíčová slova
- Dimerisation, HEK293 cells, Isotope labelling, NK cells, NMR spectroscopy, Siglec-7,
- MeSH
- antigeny diferenciační myelomonocytární * chemie metabolismus genetika MeSH
- HEK293 buňky MeSH
- izotopové značení MeSH
- lektiny * chemie metabolismus genetika MeSH
- lidé MeSH
- ligandy MeSH
- multimerizace proteinu * MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny diferenciační myelomonocytární * MeSH
- lektiny * MeSH
- ligandy MeSH
- SIGLEC7 protein, human MeSH Prohlížeč