PURPOSE: Focused ultrasound-induced blood-brain barrier (BBB) opening is a promising method for neurotherapeutic delivery. The standard for quantifying induced BBB permeability is the K trans $$ {K}^{\mathrm{trans}} $$ parameter, which reflects both permeability and plasma flow. The influence of plasma flow can be eliminated by estimating the PS parameter. However, this parameter has been largely unexplored in this application. This study aims to compare permeability estimates based on K trans $$ {K}^{\mathrm{trans}} $$ and PS in focused ultrasound-induced BBB opening experiments. METHODS: We used the extended Tofts model (ETM) and the two-compartment exchange model (2CXM) to estimate K trans $$ {K}^{\mathrm{trans}} $$ and PS parameters, respectively. Permeability estimates were compared using simulated concentration curves, simulated DCE-MRI data, and real datasets. We explored the influence of spatially-regularized model fitting on the results. RESULTS: For opened BBB, K trans $$ {K}^{\mathrm{trans}} $$ was minimally influenced by plasma flow under the tested conditions. However, fitting the ETM often introduced outliers in K trans $$ {K}^{\mathrm{trans}} $$ estimates in regions with closed BBB. The 2CXM outperformed the ETM at high signal-to-noise ratios, but its higher complexity led to lower precision at low signal-to-noise ratios. Both these issues were successfully compensated by spatially-regularized model fitting. CONCLUSION: Both K trans $$ {K}^{\mathrm{trans}} $$ and PS seem to be eligible options for the quantification of BBB opening, and the correct choice depends on the specifics of the acquired DCE-MRI data. Additionally, spatial regularization has demonstrated its importance in enhancing the accuracy and reproducibility of results for both models.
- Klíčová slova
- BBB opening, DCE‐MRI, focused ultrasound, perfusion analysis, simulation,
- MeSH
- hematoencefalická bariéra * diagnostické zobrazování metabolismus účinky záření MeSH
- kontrastní látky MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mozek diagnostické zobrazování MeSH
- permeabilita MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- kontrastní látky MeSH
MR imaging-visible perivascular spaces (PVS) have been associated with disease phenotypes, risk factors, sleep measures, and overall brain health. We review avenues in the analysis of PVS quantified from brain MR imaging across dissimilar acquisition protocols, imaging modalities, scanner manufacturers and magnetic field strengths. We conduct a pilot analysis to evaluate different avenues to harmonise PVS assessments from using different parameters using brain MR imaging from 100 adult volunteers, acquired at two different magnetic field strengths with different sequence parameters. The 2024 MICCAI Enlarged Perivascular Spaces Segmentation Challenge provides a representative MRI dataset on which to test other harmonization methods.
- Klíčová slova
- Cerebral small vessel disease, ComBat, Image processing, MR imaging, Perivascular spaces, Virchow-robin spaces, Visual rating, Z-scores,
- MeSH
- dospělí MeSH
- glymfatický systém * diagnostické zobrazování MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- magnetické pole MeSH
- mozek * diagnostické zobrazování MeSH
- neurozobrazování * metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
OBJECTIVE: The clinical diversity of schizophrenia is reflected by structural brain variability. It remains unclear how this variability manifests across different gray and white matter features. In this meta- and mega-analysis, the authors investigated how brain heterogeneity in schizophrenia is distributed across multimodal structural indicators. METHODS: The authors used the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6,037 individuals for a given brain measure. Variability and mean values of cortical thickness, cortical surface area, cortical folding index, subcortical volume, and fractional anisotropy were examined in individuals with schizophrenia and healthy control subjects. RESULTS: Individuals with schizophrenia showed greater variability in cortical thickness, cortical surface area, subcortical volume, and fractional anisotropy within the frontotemporal and subcortical network. This increased structural variability was mainly associated with psychopathological symptom domains, and the schizophrenia group frequently displayed lower mean values in the respective structural measures. Unexpectedly, folding patterns were more uniform in individuals with schizophrenia, particularly in the right caudal anterior cingulate region. The mean folding values of the right caudal anterior cingulate region did not differ between the schizophrenia and healthy control groups, and folding patterns in this region were not associated with disease-related parameters. CONCLUSIONS: In patients with schizophrenia, uniform folding patterns in the right caudal anterior cingulate region contrasted with the multimodal variability in the frontotemporal and subcortical network. While variability in the frontotemporal and subcortical network was associated with disease-related diversity, uniform folding may indicate a less flexible interplay between genetic and environmental factors during neurodevelopment.
- Klíčová slova
- Neuroimaging, Neuroscience, Schizophrenia Spectrum and Other Psychotic Disorders,
- MeSH
- anizotropie MeSH
- bílá hmota diagnostické zobrazování patologie MeSH
- cingulární gyrus patologie diagnostické zobrazování MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek * diagnostické zobrazování patologie MeSH
- mozková kůra diagnostické zobrazování patologie MeSH
- schizofrenie * patologie diagnostické zobrazování patofyziologie MeSH
- šedá hmota patologie diagnostické zobrazování MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
To identify the neurocognitive mechanisms underpinning the social difficulties that characterize autism, we performed functional magnetic resonance imaging on pairs of autistic and non-autistic adults simultaneously whilst they interacted with one another on the iterated Ultimatum Game (iUG)-an interactive task that emulates the reciprocal characteristic of naturalistic interpersonal exchanges. Two age-matched sets of male-male dyads were investigated: 16 comprised an autistic Responder and a non-autistic Proposer, and 19 comprised non-autistic pairs of Responder and Proposer. Players' round-by-round behavior on the iUG was modeled as reciprocal choices, and dynamic functional connectivity (dFC) was measured to identify the neural mechanisms underpinning reciprocal behaviors. Behavioral expressions of reciprocity were significantly reduced in autistic compared with non-autistic Responders, yet no such differences were observed between the non-autistic Proposers in either set of dyads. Furthermore, we identified latent dFC states with temporal properties associated with reciprocity. Autistic interactants spent less time in brain states characterized by dynamic inter-network integration and segregation among the Default Mode Network and cognitive control networks, suggesting that their reduced expressions of social-emotional reciprocity reflect less efficient reconfigurations among brain networks supporting flexible cognition and behavior. These findings advance our mechanistic understanding of the social difficulties characterizing autism.
- Klíčová slova
- autism, dynamic functional connectivity, reciprocity, social interaction,
- MeSH
- autistická porucha * patofyziologie psychologie diagnostické zobrazování MeSH
- dospělí MeSH
- emoce * fyziologie MeSH
- interpersonální vztahy * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- mozek * patofyziologie diagnostické zobrazování MeSH
- sociální chování * MeSH
- sociální interakce * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Neuroimaging investigations are fundamental in the diagnosis of patients with epilepsy. The International League Against Epilepsy (ILAE) harmonized neuroimaging of epilepsy structural sequences (HARNESS-MRI) protocol was intended as a generalizable structural MRI protocol. The European Reference Network for Rare and Complex Epilepsies, EpiCARE, includes 50 centers, across 26 countries, with expertise in epilepsy. We investigated adherence to the HARNESS-MRI protocol across EpiCARE. A survey on the clinical use of imaging and postprocessing methods in epilepsy patients was distributed among the centers. A descriptive analysis was performed, and results were compared to existing guidelines, as well as a previous survey in 2016. 79% of centers were adhering to the HARNESS-MRI protocol in all epilepsy patients. All centers were acquiring 3D T1-weighted sequences, 90% were acquiring 3D FLAIR and 87% were acquiring high in-plane 2D coronal T2 MRI sequences in all epilepsy patients. In comparison, in 2016, only 50% of centers were following MRI recommendations at the time. Across European expert epilepsy centers, there has been increased harmonization of MRI sequences since the introduction of the HARNESS-MRI protocol. This standardization supports optimal radiological review at individual centers as well as enabling harmonization of multicenter datasets for research. PLAIN LANGUAGE SUMMARY: Neuroimaging investigations are a fundamental component of epilepsy diagnosis. The International League Against Epilepsy (ILAE) has created guidelines about what MRI images to obtain in all epilepsy patients. In this study, we assessed the adherence of expert European epilepsy centers to these guidelines and found that 79% are acquiring the minimum set of MRI scans in all epilepsy patients. Standardization of MRI imaging serves to improve epilepsy diagnosis across Europe.
- Klíčová slova
- epilepsy, magnetic resonance imaging, postprocessing,
- MeSH
- dodržování směrnic MeSH
- epilepsie * diagnostické zobrazování MeSH
- lidé MeSH
- magnetická rezonanční tomografie * normy metody MeSH
- mozek * diagnostické zobrazování MeSH
- neurozobrazování * normy metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Geografické názvy
- Evropa MeSH
The present functional magnetic resonance imaging (fMRI) study investigated neural correlates of switching between task-processing and periods of rest in a conventional ON-OFF block-design in patients with auditory verbal hallucinations (AVHs) and healthy controls. It has been proposed that auditory hallucinations are a failure of top-down control of bottom-up perceptual processes which could be due to aberrant up- and down regulation of brain networks. A version of the Eriksen Flanker task was used to assess cognitive flexibility and conflict control. BOLD fMRI with alternating blocks of task engagement and rest was collected using a 3T MR scanner. The objective of the study was to explore how patients would dynamically modulate relevant brain networks in response to shifting environmental demands, while transitioning from a resting state to active task-processing. Analysis of performance data found significant behavioral effects between the groups, where AVH patients performed the Flanker task significantly less accurately and with longer reaction times (RTs) than the healthy control group, indicating that AVH patients displayed reduced top-down guided conflict control. A network connectivity analysis of the fMRI data showed that both groups recruited similar networks related to task-present and task-absent conditions. However, the controls displayed increased network variability across task-present and task-absent conditions. This would indicate that the controls were better at switching between networks and conditions when demands changed from task-present to task-absent, with the consequence that they would perform the Flanker task better than the AVH patients.
- MeSH
- dospělí MeSH
- halucinace * patofyziologie diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mapování mozku metody MeSH
- mladý dospělý MeSH
- mozek * patofyziologie diagnostické zobrazování MeSH
- nervová síť patofyziologie diagnostické zobrazování MeSH
- reakční čas * fyziologie MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: This study aims to evaluate the feasibility of generating pseudo-normal single photon emission computed tomography (SPECT) data from potentially abnormal images. These pseudo-normal images are primarily intended for use in an on-the-fly data harmonization technique. MATERIAL AND METHODS: The methodology was tested on brain SPECT with [123I]Ioflupane. The proposed model for generating a pseudo-normal image was based on a variational autoencoder (VAE) designed to process 2D sinograms of the brain [123I]-FP-CIT SPECT, potentially exhibiting abnormal uptake. The model aimed to predict SPECT sinograms with corresponding normal uptake. Training, validation, and testing datasets were created by SPECT simulator from 45 brain masks segmented from real patient's magnetic resonance (MR) scans, using various uptake levels. The training and validation datasets each comprised 612 and 360 samples, respectively, drawn from 36 brain masks. The testing dataset contained 153 samples based on 9 brain masks. VAE performance was evaluated through brain dimensions, Dice similarity coefficient (DSC) and specific binding ratio. RESULTS: Mean DSC was 80% for left basal ganglia and 84% for right basal ganglia. The proposed VAE demonstrated excellent consistency in predicting basal ganglia shape, with a coefficient of variation of DSC being less than 1.1%. CONCLUSIONS: The study demonstrates that VAE can effectively estimate an individualized pseudo-normal distribution of the radiotracer [123I]-FP-CIT SPECT from abnormal SPECT images. The main limitations of this preliminary research are the limited availability of real brain MR data, used as input for the SPECT data simulator, and the simplified simulation setup employed to create the synthetic dataset.
- Klíčová slova
- SPECT, [123I]-FP-CIT, harmonization, variational autoencoder,
- MeSH
- jednofotonová emisní výpočetní tomografie * MeSH
- lidé MeSH
- mozek * diagnostické zobrazování MeSH
- počítačové zpracování obrazu * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Longitudinal neuroimaging studies offer valuable insight into brain development, ageing, and disease progression over time. However, prevailing analytical approaches rooted in our understanding of population variation are primarily tailored for cross-sectional studies. To fully leverage the potential of longitudinal neuroimaging, we need methodologies that account for the complex interplay between population variation and individual dynamics. We extend the normative modelling framework, which evaluates an individual's position relative to population standards, to assess an individual's longitudinal change compared to the population's standard dynamics. Using normative models pre-trained on over 58,000 individuals, we introduce a quantitative metric termed 'z-diff' score, which quantifies a temporal change in individuals compared to a population standard. This approach offers advantages in flexibility in dataset size and ease of implementation. We applied this framework to a longitudinal dataset of 98 patients with early-stage schizophrenia who underwent MRI examinations shortly after diagnosis and 1 year later. Compared to cross-sectional analyses, showing global thinning of grey matter at the first visit, our method revealed a significant normalisation of grey matter thickness in the frontal lobe over time-an effect undetected by traditional longitudinal methods. Overall, our framework presents a flexible and effective methodology for analysing longitudinal neuroimaging data, providing insights into the progression of a disease that would otherwise be missed when using more traditional approaches.
- Klíčová slova
- MRI, human, neuroimaging, neuroscience, normative modelling, psychosis, schizophrenia,
- MeSH
- dospělí MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování MeSH
- neurozobrazování * metody MeSH
- průřezové studie MeSH
- schizofrenie * diagnostické zobrazování MeSH
- šedá hmota diagnostické zobrazování MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cardiometabolic risk factors - including diabetes, hypertension, and obesity - have long been linked with adverse health outcomes such as strokes, but more subtle brain changes in regional brain volumes and cortical thickness associated with these risk factors are less understood. Computer models can now be used to estimate brain age based on structural magnetic resonance imaging data, and subtle brain changes related to cardiometabolic risk factors may manifest as an older-appearing brain in prediction models; thus, we sought to investigate the relationship between cardiometabolic risk factors and machine learning-predicted brain age. METHODS: We performed a systematic search of PubMed and Scopus. We used the brain age gap, which represents the difference between one's predicted and chronological age, as an index of brain structural integrity. We calculated the Cohen d statistic for mean differences in the brain age gap of people with and without diabetes, hypertension, or obesity and performed random effects meta-analyses. RESULTS: We identified 185 studies, of which 14 met inclusion criteria. Among the 3 cardiometabolic risk factors, diabetes had the highest effect size (12 study samples; d = 0.275, 95% confidence interval [CI] 0.198-0.352; n = 47 436), followed by hypertension (10 study samples; d = 0.113, 95% CI 0.063-0.162; n = 45 102) and obesity (5 study samples; d = 0.112, 95% CI 0.037-0.187; n = 15 678). These effects remained significant in sensitivity analyses that included only studies that controlled for confounding effects of the other cardiometabolic risk factors. LIMITATIONS: Our study tested effect sizes of only categorically defined cardiometabolic risk factors and is limited by inconsistencies in diabetes classification, a smaller pooled sample in the obesity analysis, and limited age range reporting. CONCLUSION: Our findings show that each of the cardiometabolic risk factors uniquely contributes to brain structure, as captured by brain age. The effect size for diabetes was more than 2 times greater than the independent effects of hypertension and obesity. We therefore highlight diabetes as a primary target for the prevention of brain structural changes that may lead to cognitive decline and dementia.
- MeSH
- diabetes mellitus * epidemiologie patologie MeSH
- hypertenze * epidemiologie patologie MeSH
- kardiometabolické riziko * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek * diagnostické zobrazování patologie MeSH
- obezita * epidemiologie patologie MeSH
- stárnutí patologie MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH
PURPOSE: The aim of this study was to develop a simple, robust, and easy-to-use calibration procedure for correcting misalignments in rosette MRI k-space sampling, with the objective of producing images with minimal artifacts. METHODS: Quick automatic calibration scans were proposed for the beginning of the measurement to collect information on the time course of the rosette acquisition trajectory. A two-parameter model was devised to match the measured time-varying readout gradient delays and approximate the actual rosette sampling trajectory. The proposed calibration approach was implemented, and performance assessment was conducted on both phantoms and human subjects. RESULTS: The fidelity of phantom and in vivo images exhibited significant improvement compared with uncorrected rosette data. The two-parameter calibration approach also demonstrated enhanced precision and reliability, as evidenced by quantitative T 2 * $$ {\mathrm{T}}_2^{\ast } $$ relaxometry analyses. CONCLUSION: Adequate correction of data sampling is a crucial step in rosette MRI. The presented experimental results underscore the robustness, ease of implementation, and suitability for routine experimental use of the proposed two-parameter rosette trajectory calibration approach.
- Klíčová slova
- gradient imperfections, k‐space misalignment, rosette trajectory, trajectory estimation,
- MeSH
- algoritmy * MeSH
- artefakty * MeSH
- fantomy radiodiagnostické * MeSH
- kalibrace MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mozek diagnostické zobrazování MeSH
- počítačové zpracování obrazu * metody MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH