BACKGROUND: The unfolded protein response (UPR) enables myeloma cells to overcome the stress conditions arising from excessive proteosynthesis and thus provides a survival advantage for myeloma cells. Extramedullary disease is a more aggressive form of multiple myeloma in which myeloma cells lose their dependence on the bone marrow microenvironment and are able to infiltrate other tissues and organs. The pathogenesis of extramedullary disease is not fully elucidated yet. The aim of this study was to determine whether there is a difference in the expression of UPR-related genes between bone marrow plasma cells from multiple myeloma and extramedullary disease patients. MATERIALS AND METHODS: Gene expression of six genes involved in UPR (ERN1, DDIT3, EIF2AK3, TUSC3, XBP1, HSPA5) was analyzed by quantitative reverse transcription polymerase chain reaction. In total, 76 bone marrow plasma cell samples were used, of which 44 were from patients with multiple myeloma and 32 from patients with extramedullary disease. RESULTS: A statistically significant difference was observed between the multiple myeloma and extramedullary disease groups regarding the expression of HSPA5, DDIT3, EIF2AK3, and ERN1 genes. However, in the case of XBP1 and TUSC3 genes, no statistically significant difference in the expression was found. Several statistically significant correlations between the expression levels of the analyzed genes and the clinical data of the patients were observed as well. CONCLUSION: Our results suggest the importance of UPR in the pathogenesis of extramedullary disease. UPR appears to be a promising avenue for further research.
- Klíčová slova
- Kahler-Pick law, Multiple myeloma, Plasma cells, extramedullary disease, unfolded protein response,
- MeSH
- chaperon endoplazmatického retikula BiP MeSH
- endoribonukleasy genetika MeSH
- kinasa eIF-2 MeSH
- lidé středního věku MeSH
- lidé MeSH
- mnohočetný myelom * genetika metabolismus patologie MeSH
- plazmatické buňky metabolismus MeSH
- protein-serin-threoninkinasy genetika MeSH
- proteiny teplotního šoku genetika MeSH
- senioři MeSH
- signální dráha UPR * genetika MeSH
- transkripční faktor CHOP genetika MeSH
- transkripční faktory RFX MeSH
- XBP1 genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chaperon endoplazmatického retikula BiP MeSH
- DDIT3 protein, human MeSH Prohlížeč
- EIF2AK3 protein, human MeSH Prohlížeč
- endoribonukleasy MeSH
- ERN1 protein, human MeSH Prohlížeč
- HSPA5 protein, human MeSH Prohlížeč
- kinasa eIF-2 MeSH
- protein-serin-threoninkinasy MeSH
- proteiny teplotního šoku MeSH
- transkripční faktor CHOP MeSH
- transkripční faktory RFX MeSH
- XBP1 protein, human MeSH Prohlížeč
- XBP1 MeSH
Bio-nano interactions have been extensively explored in nanomedicine to develop selective delivery strategies and reduce systemic toxicity. To enhance the delivery of nanocarriers to cancer cells and improve the therapeutic efficiency, different nanomaterials have been developed. However, the limited clinical translation of nanoparticle-based therapies, largely due to issues associated with poor targeting, requires a deeper understanding of the biological phenomena underlying cell-nanoparticle interactions. In this context, we investigate the molecular and cellular mechanobiology parameters that control such interactions. We demonstrate that the pharmacological inhibition or the genetic ablation of the key mechanosensitive component of the Hippo pathway, i.e., yes-associated protein, enhances nanoparticle internalization by 1.5-fold. Importantly, this phenomenon occurs independently of nanoparticle properties, such as size, or cell properties such as surface area and stiffness. Our study reveals that the internalization of nanoparticles in target cells can be controlled by modulating cell mechanosensing pathways, potentially enhancing nanotherapy specificity.
- Klíčová slova
- bio−nano interactions, mechanobiology, mechanotransduction, nanoparticles,
- MeSH
- adaptorové proteiny signální transdukční * genetika metabolismus MeSH
- buněčný převod mechanických signálů MeSH
- lidé MeSH
- nanočástice * chemie metabolismus MeSH
- nanomedicína MeSH
- protein-serin-threoninkinasy metabolismus genetika MeSH
- signální dráha Hippo MeSH
- signální proteiny YAP MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorové proteiny signální transdukční * MeSH
- protein-serin-threoninkinasy MeSH
- signální proteiny YAP MeSH
- YAP1 protein, human MeSH Prohlížeč
BACKGROUND: Primary cilia facilitate cellular signalling and play critical roles in development, homeostasis, and disease. Their assembly is under the control of Tau-Tubulin Kinase 2 (TTBK2), a key enzyme mutated in patients with spinocerebellar ataxia. Recent work has implicated TTBK2 in the regulation of cilia maintenance and function, but the underlying molecular mechanisms are not understood. METHODS: To dissect the role of TTBK2 during cilia growth and maintenance in human cells, we examined disease-related TTBK2 truncations. We used biochemical approaches, proteomics, genetic engineering, and advanced microscopy techniques to unveil molecular events triggered by TTBK2. RESULTS: We demonstrate that truncated TTBK2 protein moieties, unable to localize to the mother centriole, create unique semi-permissive conditions for cilia assembly, under which cilia begin to form but fail to elongate. Subsequently, we link the defects in cilia growth to aberrant turnover of a microtubule-depolymerizing kinesin KIF2A, which we find restrained by TTBK2 phosphorylation. CONCLUSIONS: Together, our data imply that the regulation of KIF2A by TTBK2 represents an important mechanism governing cilia elongation and maintenance. Further, the requirement for concentrating TTBK2 activity to the mother centriole to initiate ciliogenesis can be under specific conditions bypassed, revealing TTBK2 recruitment-independent functions of its key partner, CEP164.
- Klíčová slova
- Basal body, Cilia, Ciliogenesis, KIF2A, TTBK2,
- MeSH
- cilie * metabolismus MeSH
- fosforylace MeSH
- kineziny * metabolismus MeSH
- lidé MeSH
- mikrotubuly * metabolismus MeSH
- protein-serin-threoninkinasy * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- KIF2A protein, human MeSH Prohlížeč
- kineziny * MeSH
- protein-serin-threoninkinasy * MeSH
- tau-tubulin kinase MeSH Prohlížeč
In advanced prostate cancer (PC), in particular after acquisition of resistance to androgen receptor (AR) signaling inhibitors (ARSI), upregulation of AR splice variants compromises endocrine therapy efficiency. Androgen receptor splice variant-7 (ARV7) is clinically the most relevant and has a distinct 3' untranslated region (3'UTR) compared to the AR full-length variant, suggesting a unique post-transcriptional regulation. Here, we set out to evaluate the applicability of the ARV7 3'UTR as a therapy target. A common single nucleotide polymorphism, rs5918762, was found to affect the splicing rate and thus the expression of ARV7 in cellular models and patient specimens. Serine/arginine-rich splicing factor 9 (SRSF9) was found to bind to and increase the inclusion of the cryptic exon 3 of ARV7 during the splicing process in the alternative C allele of rs5918762. The dual specificity protein kinase CLK2 interferes with the activity of SRSF9 by regulating its expression. Inhibition of the Cdc2-like kinase (CLK) family by the small molecules cirtuvivint or lorecivivint results in the decreased expression of ARV7. Both inhibitors show potent anti-proliferative effects in enzalutamide-treated or -naive PC models. Thus, targeting aberrant alternative splicing at the 3'UTR of ARV7 by disturbing the CLK2/SRSF9 axis might be a valuable therapeutic approach in late stage, ARSI-resistant PC.
- Klíčová slova
- 3′ untranslated region, allele‐specific regulation, androgen receptor splice variant 7, dual specificity protein kinase CLK2, serine/arginine‐family of splicing factors, splicing inhibitors,
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- alternativní sestřih MeSH
- androgenní receptory * genetika metabolismus MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty * genetika patologie metabolismus MeSH
- protein-serin-threoninkinasy * metabolismus genetika antagonisté a inhibitory MeSH
- regulace genové exprese u nádorů * účinky léků MeSH
- serin-arginin sestřihové faktory * metabolismus genetika MeSH
- sestřih RNA * MeSH
- tyrosinkinasy * metabolismus genetika antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- androgenní receptory * MeSH
- Clk dual-specificity kinases MeSH Prohlížeč
- protein-serin-threoninkinasy * MeSH
- serin-arginin sestřihové faktory * MeSH
- tyrosinkinasy * MeSH
The cytokine TNF can trigger highly proinflammatory RIPK1-dependent cell death. Here, we show that the two adapter proteins, TANK and AZI2, suppress TNF-induced cell death by regulating the activation of TBK1 kinase. Mice lacking either TANK or AZI2 do not show an overt phenotype. Conversely, animals deficient in both adapters are born in a sub-Mendelian ratio and suffer from severe multi-organ inflammation, excessive antibody production, male sterility, and early mortality, which can be rescued by TNFR1 deficiency and significantly improved by expressing a kinase-dead form of RIPK1. Mechanistically, TANK and AZI2 both recruit TBK1 to the TNF receptor signaling complex, but with distinct kinetics due to interaction with different complex components. While TANK binds directly to the adapter NEMO, AZI2 is recruited later via deubiquitinase A20. In summary, our data show that TANK and AZI2 cooperatively sustain TBK1 activity during different stages of TNF receptor assembly to protect against autoinflammation.
- MeSH
- adaptorové proteiny signální transdukční * metabolismus genetika MeSH
- buněčná smrt MeSH
- endopeptidasy MeSH
- intracelulární signální peptidy a proteiny metabolismus genetika MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- protein-serin-threoninkinasy * metabolismus genetika MeSH
- receptory TNF - typ I * metabolismus genetika MeSH
- serin-threoninkinasy interagující s receptory * metabolismus genetika MeSH
- signální transdukce MeSH
- TNF-alfa * metabolismus MeSH
- TNFAIP3 metabolismus genetika MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční * MeSH
- endopeptidasy MeSH
- gumby protein, mouse MeSH Prohlížeč
- intracelulární signální peptidy a proteiny MeSH
- NEMO protein, mouse MeSH Prohlížeč
- protein-serin-threoninkinasy * MeSH
- receptory TNF - typ I * MeSH
- Ripk1 protein, mouse MeSH Prohlížeč
- serin-threoninkinasy interagující s receptory * MeSH
- Tbk1 protein, mouse MeSH Prohlížeč
- TNF-alfa * MeSH
- Tnfaip3 protein, mouse MeSH Prohlížeč
- TNFAIP3 MeSH
- Tnfrsf1a protein, mouse MeSH Prohlížeč
- Tnip2 protein, mouse MeSH Prohlížeč
StkP, the Ser/Thr protein kinase of the major human pathogen Streptococcus pneumoniae, monitors cell wall signals and regulates growth and division in response. In vivo, StkP interacts with GpsB, a cell division protein required for septal ring formation and closure, that affects StkP-dependent phosphorylation. Here, we report that although StkP has basal intrinsic kinase activity, GpsB promotes efficient autophosphorylation of StkP and phosphorylation of StkP substrates. Phosphoproteomic analyzes showed that GpsB is phosphorylated at several Ser and Thr residues. We confirmed that StkP directly phosphorylates GpsB in vitro and in vivo, with T79 and T83 being the major phosphorylation sites. In vitro, phosphoablative GpsB substitutions had a lower potential to stimulate StkP activity, whereas phosphomimetic substitutions were functional in terms of StkP activation. In vivo, substitutions of GpsB phosphoacceptor residues, either phosphoablative or mimetic, had a negative effect on GpsB function, resulting in reduced StkP-dependent phosphorylation and impaired cell division. The bacterial two-hybrid assay and co-immunoprecipitation of GpsB from cells with differentially active StkP indicated that increased phosphorylation of GpsB resulted in a more efficient interaction of GpsB with StkP. Our data suggest that GpsB acts as an adaptor that directly promotes StkP activity by mediating interactions within the StkP signaling hub, ensuring StkP recruitment into the complex and substrate specificity. We present a model that interaction of StkP with GpsB and its phosphorylation and dephosphorylation dynamically modulate kinase activity during exponential growth and under cell wall stress of S. pneumoniae, ensuring the proper functioning of the StkP signaling pathway.
- Klíčová slova
- Ser/Thr protein kinase, cell division, cell signalling, phosphorylation, protein-protein interaction,
- MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- buněčné dělení * MeSH
- fosforylace MeSH
- protein-serin-threoninkinasy * metabolismus genetika MeSH
- signální transdukce * MeSH
- Streptococcus pneumoniae * metabolismus genetika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- protein-serin-threoninkinasy * MeSH
BACKGROUND: Genetic factors are involved in the pathogenesis of familial and sporadic amyotrophic lateral sclerosis (ALS) and constitute a link to its association with frontotemporal dementia (FTD). Gene-targeted therapies for some forms of ALS (C9orf72, SOD1) have recently gained momentum. Genetic architecture in Czech ALS patients has not been comprehensively assessed so far. OBJECTIVE: We aimed to deliver pilot data on the genetic landscape of ALS in our country. METHODS: A cohort of patients with ALS (n = 88), recruited from two Czech Neuromuscular Centers, was assessed for hexanucleotide repeat expansion (HRE) in C9orf72 and also for genetic variations in other 36 ALS-linked genes via next-generation sequencing (NGS). Nine patients (10.1%) had a familial ALS. Further, we analyzed two subgroups of sporadic patients - with concomitant FTD (n = 7) and with young-onset of the disease (n = 22). RESULTS: We detected the pathogenic HRE in C9orf72 in 12 patients (13.5%) and three other pathogenic variants in FUS, TARDBP and TBK1, each in one patient. Additional 7 novel and 9 rare known variants with uncertain causal significance have been detected in 15 patients. Three sporadic patients with FTD (42.9%) were harbouring a pathogenic variant (all HRE in C9orf72). Surprisingly, none of the young-onset sporadic patients harboured a pathogenic variant and we detected no pathogenic SOD1 variant in our cohort. CONCLUSION: Our findings resemble those from other European populations, with the highest prevalence of HRE in the C9orf72 gene. Further, our findings suggest a possibility of a missing genetic variability among young-onset patients.
- Klíčová slova
- Amyotrophic lateral sclerosis, C9orf72 repeat expansion, gene variants, mutation screening, neurogenetics, next-generation sequencing,
- MeSH
- amyotrofická laterální skleróza * genetika MeSH
- DNA vazebné proteiny genetika MeSH
- dospělí MeSH
- expanze repetic DNA * MeSH
- frontotemporální demence * genetika MeSH
- genetická predispozice k nemoci MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- protein C9orf72 * genetika MeSH
- protein FUS vázající RNA genetika MeSH
- protein-serin-threoninkinasy genetika MeSH
- senioři MeSH
- věk při počátku nemoci MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- C9orf72 protein, human MeSH Prohlížeč
- DNA vazebné proteiny MeSH
- FUS protein, human MeSH Prohlížeč
- protein C9orf72 * MeSH
- protein FUS vázající RNA MeSH
- protein-serin-threoninkinasy MeSH
- TARDBP protein, human MeSH Prohlížeč
- TBK1 protein, human MeSH Prohlížeč
The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.
- Klíčová slova
- NF1, RAS Interactome, RAS Signaling, Senescence-Associated Secretory Phenotype, Ubiquitination,
- MeSH
- GTP-fosfohydrolasy metabolismus genetika MeSH
- lidé MeSH
- lysin metabolismus MeSH
- membránové proteiny metabolismus genetika MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- neurofibromin 1 MeSH
- protein aktivující GTPasu p120 metabolismus genetika MeSH
- protein-serin-threoninkinasy metabolismus genetika MeSH
- protoonkogenní proteiny p21(ras) * metabolismus genetika MeSH
- Ras proteiny metabolismus genetika MeSH
- signální transdukce MeSH
- ubikvitinace * MeSH
- vazba proteinů * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GTP-fosfohydrolasy MeSH
- KRAS protein, human MeSH Prohlížeč
- lysin MeSH
- membránové proteiny MeSH
- neurofibromin 1 MeSH
- NF1 protein, human MeSH Prohlížeč
- NRAS protein, human MeSH Prohlížeč
- protein aktivující GTPasu p120 MeSH
- protein-serin-threoninkinasy MeSH
- protoonkogenní proteiny p21(ras) * MeSH
- Ras proteiny MeSH
- RASA1 protein, human MeSH Prohlížeč
- TBK1 protein, human MeSH Prohlížeč
Gcn4p belongs to conserved AP-1 transcription factors involved in many cellular processes, including cell proliferation, stress response, and nutrient availability in yeast and mammals. AP-1 activities are regulated at different levels, such as translational activation or protein degradation, which increases the variability of regulation under different conditions. Gcn4p activity in unstructured yeast liquid cultures increases upon amino acid deficiency and is rapidly eliminated upon amino acid excess. Gcn2p kinase is the major described regulator of Gcn4p that enables GCN4 mRNA translation via the uORFs mechanism. Here, we show that Gcn4p is specifically active in U cells in the upper regions and inactive in L cells in the lower regions of differentiated colonies. Using in situ microscopy in combination with analysis of mutants and strains with GFP at different positions in the translational regulatory region of Gcn4p, we show that cell-specific Gcn4p activity is independent of Gcn2p or other translational or transcriptional regulation. Genetically, biochemically, and microscopically, we identified cell-specific proteasomal degradation as a key mechanism that diversifies Gcn4p function between U and L cells. The identified regulation leading to active Gcn4p in U cells with amino acids and efficient degradation in starved L cells differs from known regulations of Gcn4p in yeast but shows similarities to the activity of AP-1 ATF4 in mammals during insulin signaling. These findings may open new avenues for understanding the parallel activities of Gcn4p/ATF4 and reveal a novel biological role for cell type-specific regulation of proteasome-dependent degradation.IMPORTANCEIn nature, microbes usually live in spatially structured communities and differentiate into precisely localized, functionally specialized cells. The coordinated interplay of cells and their response to environmental changes, such as starvation, followed by metabolic adaptation, is critical for the survival of the entire community. Transcription factor Gcn4p is responsible for yeast adaptation under amino acid starvation in liquid cultures, and its activity is regulated mainly at the level of translation involving Gcn2p kinase. Whether Gcn4p functions in structured communities was unknown. We show that translational regulation of Gcn4p plays no role in the development of colony subpopulations; the main regulation occurs at the level of stabilization of the Gcn4p molecule in the cells of one subpopulation and its proteasomal degradation in the other. This regulation ensures specific spatiotemporal activity of Gcn4p in the colony. Our work highlights differences in regulatory networks in unorganized populations and organized structures of yeast, which in many respects resemble multicellular organisms.
- Klíčová slova
- Saccharomyces cerevisiae, cell-specific regulation, differentiated colonies, proteasomal degradation, spatially structured populations, transcription factor, yeast,
- MeSH
- protein-serin-threoninkinasy metabolismus genetika MeSH
- proteolýza MeSH
- proteosyntéza MeSH
- regulace genové exprese u hub * MeSH
- Saccharomyces cerevisiae - proteiny * genetika metabolismus MeSH
- Saccharomyces cerevisiae * genetika metabolismus MeSH
- stabilita proteinů MeSH
- transkripční faktory bZIP * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GCN2 protein, S cerevisiae MeSH Prohlížeč
- GCN4 protein, S cerevisiae MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- transkripční faktory bZIP * MeSH
Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.
- Klíčová slova
- NEK8, ciliopathy, kinase, polycystic kidney disease,
- MeSH
- cilie patologie MeSH
- kationtové kanály TRPP genetika metabolismus MeSH
- kinasy NEK genetika metabolismus MeSH
- ledviny metabolismus MeSH
- lidé MeSH
- mutace MeSH
- myši MeSH
- novorozenec MeSH
- polycystická choroba ledvin * genetika MeSH
- polycystické ledviny autozomálně dominantní * patologie MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- serin genetika metabolismus MeSH
- transportní proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- novorozenec MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ANKS6 protein, mouse MeSH Prohlížeč
- kationtové kanály TRPP MeSH
- kinasy NEK MeSH
- NEK8 protein, human MeSH Prohlížeč
- Nek8 protein, mouse MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- serin MeSH
- transportní proteiny MeSH