bioengineering methods
Dotaz
Zobrazit nápovědu
The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.
- MeSH
- bioinženýrství metody MeSH
- časové faktory MeSH
- diferenciální skenovací kalorimetrie MeSH
- mikroskopie elektronová rastrovací MeSH
- molekulová hmotnost MeSH
- polymery chemie MeSH
- poréznost MeSH
- potkani inbrední BN MeSH
- povrchové vlastnosti MeSH
- rtuť analýza MeSH
- teplota * MeSH
- tkáňové podpůrné struktury chemie MeSH
- změna skupenství * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polymery MeSH
- rtuť MeSH
Nanotechnology is one of the most impressive sciences in the twenty-first century. Not surprisingly, nanoparticles/nanomaterials have been widely deployed given their multifunctional attributes and ease of preparation via environmentally friendly, cost-effective, and simple methods. Although there are assorted optimized preparative methods for synthesizing the nanoparticles, the main challenge is to find a comprehensive method that has multifaceted properties. The goal of this study has been to synthesize aminated (nano)particles via the Rosmarinus officinalis leaf extract-mediated copper oxide; this modification leads to the preparation of (nano)particles with promising biological and photocatalytic applications. The synthesized NPs have been fully characterized, and biological activity was evaluated in antibacterial assessment against Bacillus cereus as a model Gram-positive and Pseudomonas aeruginosa as a model Gram-negative bacterium. The bio-synthesized copper oxide (nano)particles were screened by MTT assay by applying the HEK-293 cell line. The aminated (nano)particles have shown lower cytotoxicity (~ 21%), higher (~ 50%) antibacterial activity, and a considerable increase in zeta potential value (~ + 13.4 mV). The prepared (nano)particles also revealed considerable photocatalytic activity compared to other studies wherein the dye degradation process attained 97.4% promising efficiency in only 80 min and just 7% degradation after 80 min under dark conditions. The biosynthesized copper oxide (CuO) (nano)particle's biomedical investigation underscores an eco-friendly synthesis of (nano)particles, their noticeable stability in the green reaction media, and impressive biological activity.
- MeSH
- aminace MeSH
- antibakteriální látky metabolismus farmakologie MeSH
- bioinženýrství MeSH
- HEK293 buňky MeSH
- kovové nanočástice * MeSH
- lidé MeSH
- měď * farmakologie MeSH
- oxidy MeSH
- poréznost MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- cupric oxide MeSH Prohlížeč
- měď * MeSH
- oxidy MeSH
Small extracellular vesicles (sEVs) are a type of membranous vesicles that can be released by cells into the extracellular space. The relationship between sEVs and non-coding RNAs (ncRNAs) is highly intricate and interdependent. This symbiotic relationship plays a pivotal role in facilitating intercellular communication and holds profound implications for a myriad of biological processes. The concept of sEVs and their ncRNA cargo as a "Trojan Horse" highlights their remarkable capacity to traverse biological barriers and surreptitiously deliver their cargo to target cells, evading detection by the host-immune system. Accumulating evidence suggests that sEVs may be harnessed as carriers to ferry therapeutic ncRNAs capable of selectively silencing disease-driving genes, particularly in conditions such as cancer. This approach presents several advantages over conventional drug delivery methods, opening up new possibilities for targeted therapy and improved treatment outcomes. However, the utilization of sEVs and ncRNAs as therapeutic agents raises valid concerns regarding the possibility of unforeseen consequences and unintended impacts that may emerge from their application. It is important to consider the fundamental attributes of sEVs and ncRNAs, including by an in-depth analysis of the practical and clinical potentials of exosomes, serving as a representative model for sEVs encapsulating ncRNAs.
- Klíčová slova
- Exosomes, Non-coding RNAs, Small extracellular vesicles, Therapeutic agent, cancer,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.
- Klíčová slova
- Biocatalysis, Immobilization methods, Immobilized whole-cell biocatalyst, Multienzyme cascade reactions, Process economics, Reaction engineering,
- MeSH
- bioinženýrství * MeSH
- biokatalýza * MeSH
- bioreaktory * MeSH
- imobilizované buňky * MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The reliability of dynamic measurement methods of k(l)a in fermentors using a step oxygen concentration change in the feed gas was tested. The tests were performed both for the original variant using the nitrogen right harpoon over left harpoon air exchange and the newly presented variant using the oxygen-enriched air (27 vol % O(2)) --> air exchange. The testing consisted in comparing k(l)a values determined from these methods with values determined from the steady-state Na(2)SO(3) feeding method and the dynamic pressure method, the reliability of which was proven earlier. The measurements were done in water (coalescent batch) and in 0.5M Na(2)SO(4) solution with and without the addition of 1 wt % carboxymethylcellulose (noncoalescent batches). It was found that in noncoalescent liquids the methods tested give extremely low k(l)a values (as low as 15% of the correct value). The methods are defective in principle irrespective of the gases used for exchange.
- Publikační typ
- časopisecké články MeSH
The position of the trunk can be negatively influenced by many diseases. Several methods can be used for identifying defects in balance and coordination as a result of pathology of the musculoskeletal or nervous system. The aim of this article is to examine the relationship between the three methods used for analysis of trunk sway and compare two fundamentally different MoCap systems. We used a camera system and a 3DOF orientation tracker placed on subject's trunk, and measured inclination (roll) and flexion (pitch) during quiet stance. Ten healthy participants in the study were measured with eyes open and closed. The pitch versus roll plots of trunk were formed, and the area of the convex hull, area of confidence ellipse and total length of the trajectory of the pitch versus roll plot were calculated. The statistical analysis was performed and strong correlation between the area of the convex hull and area of the confidence ellipse was found. Also, the results show moderate correlation between the area of the confidence ellipse and total length of the trace, and moderate correlation between the area of the convex hull and total length of the trace. In general, the different MoCap systems show different areas and lengths but lead to the same conclusions. Statistical analysis of the participants with eyes open and eye closed did not show significant difference in the areas and total lengths of the pitch versus roll plots.
The article deals with an overview of acute extremity compartment syndrome with a focus on the option of non-invasive detection of the syndrome. Acute extremity compartment syndrome (ECS) is an urgent complication that occurs most often in fractures or high-energy injuries. There is still no reliable method for detecting ECS. The only objective measurement method used in clinical practice is an invasive measurement of intramuscular pressure (IMP). The purpose of this paper is to summarize the current state of research into non-invasive measurement methods that could allow simple and reliable continuous monitoring of patients at risk of developing ECS. Clinical trials are currently underway to verify the suitability of the most studied method, near-infrared spectroscopy (NIRS), which is a method for measuring the local oxygenation of muscle compartments. Less explored methods include the use of ultrasound, ultrasound elastography, bioimpedance measurements, and quantitative tissue hardness measurements. Finding a suitable method for continuous non-invasive monitoring of the syndrome would greatly improve the quality of care for patients at risk. ECS must be diagnosed quickly and accurately to prevent irreversible tissue damage that can occur within hours of syndrome onset and may even warrant amputation if neglected.
- Klíčová slova
- acute compartment syndrome, bioimpedance measurement, continuous measurement, detection, non-invasive diagnosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Shikonins are commercially important secondary compounds, known for array of biological activities such as antimicrobial, insecticidal, antitumor, antioxidants, etc. These compounds are usually colored and therefore have application in food, textiles and cosmetics. Shikonin and its derivatives, which are commercially most important of the naphthoquinone pigments, are distributed among members of the family Boraginaceae. These include different species of Lithospermum, Arnebia, Alkanna, Anchusa, Echium and Onosma. The growing demand for plant-based natural products has made this group of compounds one of the enthralling targets for their in vitro production. The aim of this review is to highlight the recent progress in production of shikonins by various biotechnological means. Different methods of increasing the levels of shikonins in plant cells such as selection of cell lines, optimization of culture conditions, elicitation, in situ product removal, genetic transformation and metabolic engineering are discussed. The experience of different researchers working worldwide on this aspect is also considered. Further, to meet market demand, the needs for continuous and reliable production systems, as well as future prospects, are included.
- Klíčová slova
- Alkannin, boraginaceae, cell culture, in vitro culture, naphthoquinones, natural products, pigments, secondary metabolites,
- MeSH
- bioinženýrství * MeSH
- Boraginaceae * chemie metabolismus MeSH
- naftochinony * chemie metabolismus terapeutické užití MeSH
- rostlinné extrakty * analýza chemie metabolismus MeSH
- techniky tkáňových kultur * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- naftochinony * MeSH
- rostlinné extrakty * MeSH
- shikonin MeSH Prohlížeč
The circular economy of animal by-products rich in collagen focuses on converting collagen into peptides with a defined molecular weight. Collagen hydrolysates prepared by biotechnological methods from chicken gizzards, deer tendons, and Cyprinus carpio skeletons can be an alternative source of collagen for cosmetic products that traditionally use bovine or porcine collagen hydrolysates. Collagen hydrolysates were characterized by antioxidant activity, surface tension, solution contact angle, and other parameters (dry weight, ash content, and solution clarity). Furthermore, the vibrational characterization of functional groups and their molecular weight was performed using the GPC-RID method. Subsequently, emulsion and gel cosmetic matrices were prepared with 0.5% and 1.5% collagen hydrolysates. Microbiological stability, organoleptic properties, and viscosity were investigated. Verification of the biophysical parameters of the topical formulations was performed in vivo on a group of volunteers by measuring skin hydration and pH and determining trans-epidermal water loss. Fish collagen hydrolysate was the most suitable for cosmetic applications in the parameters investigated. Moreover, it also effectively reduces wrinkles in the periorbital region when used in a gel matrix.
- Klíčová slova
- animal by-products, antimicrobial effect, bioengineering methods, collagen hydrolysate, topical formulation, wrinkles,
- MeSH
- antioxidancia chemie farmakologie MeSH
- aplikace lokální MeSH
- emulze chemie MeSH
- kapři MeSH
- kolagen * chemie farmakologie MeSH
- kosmetické přípravky * chemie farmakologie MeSH
- kur domácí MeSH
- kůže účinky léků MeSH
- lidé MeSH
- prasata MeSH
- proteinové hydrolyzáty * chemie farmakologie MeSH
- skot MeSH
- stárnutí kůže účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- emulze MeSH
- kolagen * MeSH
- kosmetické přípravky * MeSH
- proteinové hydrolyzáty * MeSH