Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The parameters of the stochastic leaky integrate-and-fire neuronal model

Lansky P, Sanda P, He J

. 2006 ; 21 (2) : 211-223.

Jazyk angličtina Země Spojené státy americké

Perzistentní odkaz   https://www.medvik.cz/link/bmc09003729
E-zdroje Online

NLK ProQuest Central od 1999-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1999-01-01 do Před 1 rokem
Psychology Database (ProQuest) od 1999-01-01 do Před 1 rokem

Five parameters of one of the most common neuronal models, the diffusion leaky integrate-and-fire model, also known as the Ornstein-Uhlenbeck neuronal model, were estimated on the basis of intracellular recording. These parameters can be classified into two categories. Three of them (the membrane time constant, the resting potential and the firing threshold) characterize the neuron itself. The remaining two characterize the neuronal input. The intracellular data were collected during spontaneous firing, which in this case is characterized by a Poisson process of interspike intervals. Two methods for the estimation were applied, the regression method and the maximum-likelihood method. Both methods permit to estimate the input parameters and the membrane time constant in a short time window (a single interspike interval). We found that, at least in our example, the regression method gave more consistent results than the maximum-likelihood method. The estimates of the input parameters show the asymptotical normality, which can be further used for statistical testing, under the condition that the data are collected in different experimental situations. The model neuron, as deduced from the determined parameters, works in a subthreshold regimen. This result was confirmed by both applied methods. The subthreshold regimen for this model is characterized by the Poissonian firing. This is in a complete agreement with the observed interspike interval data.

000      
00000naa 2200000 a 4500
001      
bmc09003729
003      
CZ-PrNML
005      
20111210153056.0
008      
091124s2006 xxu e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lánský, Petr $7 xx0062306
245    14
$a The parameters of the stochastic leaky integrate-and-fire neuronal model / $c Lansky P, Sanda P, He J
314    __
$a Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. lansky@biomed.cas.cz
520    9_
$a Five parameters of one of the most common neuronal models, the diffusion leaky integrate-and-fire model, also known as the Ornstein-Uhlenbeck neuronal model, were estimated on the basis of intracellular recording. These parameters can be classified into two categories. Three of them (the membrane time constant, the resting potential and the firing threshold) characterize the neuron itself. The remaining two characterize the neuronal input. The intracellular data were collected during spontaneous firing, which in this case is characterized by a Poisson process of interspike intervals. Two methods for the estimation were applied, the regression method and the maximum-likelihood method. Both methods permit to estimate the input parameters and the membrane time constant in a short time window (a single interspike interval). We found that, at least in our example, the regression method gave more consistent results than the maximum-likelihood method. The estimates of the input parameters show the asymptotical normality, which can be further used for statistical testing, under the condition that the data are collected in different experimental situations. The model neuron, as deduced from the determined parameters, works in a subthreshold regimen. This result was confirmed by both applied methods. The subthreshold regimen for this model is characterized by the Poissonian firing. This is in a complete agreement with the observed interspike interval data.
650    _2
$a financování organizované $7 D005381
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a zvířata $7 D000818
650    _2
$a mozek $x fyziologie $7 D001921
650    _2
$a buněčná membrána $x fyziologie $7 D002462
650    _2
$a lidé $7 D006801
650    _2
$a neuronové sítě $7 D016571
650    _2
$a nervové dráhy $x fyziologie $7 D009434
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a Poissonovo rozdělení $7 D016012
650    _2
$a počítačové zpracování signálu $7 D012815
650    _2
$a stochastické procesy $7 D013269
650    _2
$a synapse $x fyziologie $7 D013569
650    _2
$a nervový přenos $x fyziologie $7 D009435
700    1_
$a Šanda, Pavel $7 xx0127126
700    1_
$a He, Jufang
773    0_
$w MED00007695 $t Journal of computational neuroscience $g Roč. 21, č. 2 (2006), s. 211-223 $x 0929-5313
910    __
$a ABA008 $b x $y 8
990    __
$a 20090310084605 $b ABA008
991    __
$a 20100128130808 $b ABA008
999    __
$a ok $b bmc $g 696539 $s 558897
BAS    __
$a 3
BMC    __
$a 2006 $b 21 $c 2 $d 211-223 $i 0929-5313 $m Journal of computational neuroscience $x MED00007695
LZP    __
$a 2009-B4/ipme

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...