-
Je něco špatně v tomto záznamu ?
The parameters of the stochastic leaky integrate-and-fire neuronal model
Lansky P, Sanda P, He J
Jazyk angličtina Země Spojené státy americké
NLK
ProQuest Central
od 1999-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1999-01-01 do Před 1 rokem
Psychology Database (ProQuest)
od 1999-01-01 do Před 1 rokem
- MeSH
- akční potenciály fyziologie MeSH
- buněčná membrána fyziologie MeSH
- financování organizované MeSH
- lidé MeSH
- mozek fyziologie MeSH
- nervové dráhy fyziologie MeSH
- nervový přenos fyziologie MeSH
- neuronové sítě MeSH
- neurony fyziologie MeSH
- počítačové zpracování signálu MeSH
- Poissonovo rozdělení MeSH
- stochastické procesy MeSH
- synapse fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
Five parameters of one of the most common neuronal models, the diffusion leaky integrate-and-fire model, also known as the Ornstein-Uhlenbeck neuronal model, were estimated on the basis of intracellular recording. These parameters can be classified into two categories. Three of them (the membrane time constant, the resting potential and the firing threshold) characterize the neuron itself. The remaining two characterize the neuronal input. The intracellular data were collected during spontaneous firing, which in this case is characterized by a Poisson process of interspike intervals. Two methods for the estimation were applied, the regression method and the maximum-likelihood method. Both methods permit to estimate the input parameters and the membrane time constant in a short time window (a single interspike interval). We found that, at least in our example, the regression method gave more consistent results than the maximum-likelihood method. The estimates of the input parameters show the asymptotical normality, which can be further used for statistical testing, under the condition that the data are collected in different experimental situations. The model neuron, as deduced from the determined parameters, works in a subthreshold regimen. This result was confirmed by both applied methods. The subthreshold regimen for this model is characterized by the Poissonian firing. This is in a complete agreement with the observed interspike interval data.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc09003729
- 003
- CZ-PrNML
- 005
- 20111210153056.0
- 008
- 091124s2006 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Lánský, Petr $7 xx0062306
- 245 14
- $a The parameters of the stochastic leaky integrate-and-fire neuronal model / $c Lansky P, Sanda P, He J
- 314 __
- $a Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. lansky@biomed.cas.cz
- 520 9_
- $a Five parameters of one of the most common neuronal models, the diffusion leaky integrate-and-fire model, also known as the Ornstein-Uhlenbeck neuronal model, were estimated on the basis of intracellular recording. These parameters can be classified into two categories. Three of them (the membrane time constant, the resting potential and the firing threshold) characterize the neuron itself. The remaining two characterize the neuronal input. The intracellular data were collected during spontaneous firing, which in this case is characterized by a Poisson process of interspike intervals. Two methods for the estimation were applied, the regression method and the maximum-likelihood method. Both methods permit to estimate the input parameters and the membrane time constant in a short time window (a single interspike interval). We found that, at least in our example, the regression method gave more consistent results than the maximum-likelihood method. The estimates of the input parameters show the asymptotical normality, which can be further used for statistical testing, under the condition that the data are collected in different experimental situations. The model neuron, as deduced from the determined parameters, works in a subthreshold regimen. This result was confirmed by both applied methods. The subthreshold regimen for this model is characterized by the Poissonian firing. This is in a complete agreement with the observed interspike interval data.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a mozek $x fyziologie $7 D001921
- 650 _2
- $a buněčná membrána $x fyziologie $7 D002462
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a nervové dráhy $x fyziologie $7 D009434
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a Poissonovo rozdělení $7 D016012
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a stochastické procesy $7 D013269
- 650 _2
- $a synapse $x fyziologie $7 D013569
- 650 _2
- $a nervový přenos $x fyziologie $7 D009435
- 700 1_
- $a Šanda, Pavel $7 xx0127126
- 700 1_
- $a He, Jufang
- 773 0_
- $w MED00007695 $t Journal of computational neuroscience $g Roč. 21, č. 2 (2006), s. 211-223 $x 0929-5313
- 910 __
- $a ABA008 $b x $y 8
- 990 __
- $a 20090310084605 $b ABA008
- 991 __
- $a 20100128130808 $b ABA008
- 999 __
- $a ok $b bmc $g 696539 $s 558897
- BAS __
- $a 3
- BMC __
- $a 2006 $b 21 $c 2 $d 211-223 $i 0929-5313 $m Journal of computational neuroscience $x MED00007695
- LZP __
- $a 2009-B4/ipme