Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Transplantation of embryonic neuroectodermal progenitor cells into the site of a photochemical lesion: immunohistochemical and electrophysiological analysis

Anderová M, Kubinová S, Jelitai M, Neprasová H, Glogarová K, Prajerová I, Urdzíková L, Chvátal A, Syková E.

. 2006 ; 66 (10) : 1084-1100.

Language English Country United States

GFP labeled/NE-4C neural progenitor cells cloned from primary neuroectodermal cultures of p53- mouse embryos give rise to neurons when exposed to retinoic acid in vitro. To study their survival and differentiation in vivo, cells were transplanted into the cortex of 6-week-old rats, 1 week after the induction of a photochemical lesion or into noninjured cortex. The electrophysiological properties of GFP/NE-4C cells were studied in vitro (8-10 days after differentiation induction) and 4 weeks after transplantation using the whole-cell patch-clamp technique, and immunohistochemical analyses were carried out. After transplantation into a photochemical lesion, a large number of cells survived, some of which expressed the astrocytic marker GFAP. GFP/GFAP-positive cells, with an average resting membrane potential (Vrest) of -71.9 mV, displayed passive time- and voltage-independent K+ currents and, additionally, voltage-dependent A-type K+ currents (KA) and/or delayed outwardly rectifying K+ currents (KDR). Numerous GFP-positive cells expressed NeuN, betaIII-tubulin, or 68 kD neurofilaments. GFP/betaIII-tubulin-positive cells, with an average Vrest of -61.6 mV, were characterized by the expression of KA and KDR currents and tetrodotoxin-sensitive Na+ currents. GFP/NE-4C cells also gave rise to oligodendrocytes, based on the detection of oligodendrocyte-specific markers. Our results indicate that GFP/NE-4C neural progenitors transplanted into the site of a photochemical lesion give rise to neurons and astrocytes with membrane properties comparable to those transplanted into noninjured cortex. Therefore, GFP/NE-4C cells provide a suitable model for studying neuro- and gliogenesis in vivo. Further, our results suggest that embryonic neuroectodermal progenitor cells may hold considerable promise for the repair of ischemic brain lesions.

References provided by Crossref.org

000      
00000naa 2200000 a 4500
001      
bmc09003871
003      
CZ-PrNML
005      
20180112092346.0
008      
091125s2006 xxu e eng||
009      
AR
024    __
$a 10.1002/neu.20278 $2 doi
035    __
$a (PubMed)16838369
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Anděrová, Miroslava $7 xx0074365
245    10
$a Transplantation of embryonic neuroectodermal progenitor cells into the site of a photochemical lesion: immunohistochemical and electrophysiological analysis / $c Anderová M, Kubinová S, Jelitai M, Neprasová H, Glogarová K, Prajerová I, Urdzíková L, Chvátal A, Syková E.
314    __
$a Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic. anderova@biomed.cas.cz
520    9_
$a GFP labeled/NE-4C neural progenitor cells cloned from primary neuroectodermal cultures of p53- mouse embryos give rise to neurons when exposed to retinoic acid in vitro. To study their survival and differentiation in vivo, cells were transplanted into the cortex of 6-week-old rats, 1 week after the induction of a photochemical lesion or into noninjured cortex. The electrophysiological properties of GFP/NE-4C cells were studied in vitro (8-10 days after differentiation induction) and 4 weeks after transplantation using the whole-cell patch-clamp technique, and immunohistochemical analyses were carried out. After transplantation into a photochemical lesion, a large number of cells survived, some of which expressed the astrocytic marker GFAP. GFP/GFAP-positive cells, with an average resting membrane potential (Vrest) of -71.9 mV, displayed passive time- and voltage-independent K+ currents and, additionally, voltage-dependent A-type K+ currents (KA) and/or delayed outwardly rectifying K+ currents (KDR). Numerous GFP-positive cells expressed NeuN, betaIII-tubulin, or 68 kD neurofilaments. GFP/betaIII-tubulin-positive cells, with an average Vrest of -61.6 mV, were characterized by the expression of KA and KDR currents and tetrodotoxin-sensitive Na+ currents. GFP/NE-4C cells also gave rise to oligodendrocytes, based on the detection of oligodendrocyte-specific markers. Our results indicate that GFP/NE-4C neural progenitors transplanted into the site of a photochemical lesion give rise to neurons and astrocytes with membrane properties comparable to those transplanted into noninjured cortex. Therefore, GFP/NE-4C cells provide a suitable model for studying neuro- and gliogenesis in vivo. Further, our results suggest that embryonic neuroectodermal progenitor cells may hold considerable promise for the repair of ischemic brain lesions.
650    _2
$a zvířata $7 D000818
650    _2
$a protinádorové látky $x farmakologie $7 D000970
650    _2
$a astrocyty $x fyziologie $7 D001253
650    _2
$a ischemie mozku $x patologie $x terapie $7 D002545
650    _2
$a buněčná diferenciace $x účinky léků $7 D002454
650    _2
$a buněčné linie $7 D002460
650    _2
$a mozková kůra $x fyziologie $x chirurgie $x patologie $7 D002540
650    _2
$a denervace $x metody $7 D003714
650    _2
$a modely nemocí na zvířatech $7 D004195
650    _2
$a ektoderm $x cytologie $7 D004475
650    _2
$a přežívání štěpu $7 D006085
650    _2
$a zelené fluorescenční proteiny $x genetika $7 D049452
650    _2
$a imunohistochemie $7 D007150
650    _2
$a membránové potenciály $7 D008564
650    _2
$a myši $7 D051379
650    _2
$a neurony $x cytologie $x fyziologie $7 D009474
650    _2
$a oligodendroglie $x fyziologie $7 D009836
650    _2
$a metoda terčíkového zámku $7 D018408
650    _2
$a fotosenzibilizující látky $7 D017319
650    _2
$a transplantace kmenových buněk $7 D033581
650    _2
$a kmenové buňky $x cytologie $x fyziologie $7 D013234
650    _2
$a tretinoin $x farmakologie $7 D014212
650    _2
$a financování organizované $7 D005381
700    1_
$a Kubinová, Šárka $7 xx0128662
700    1_
$a Jelitai, Marti
700    1_
$a Neprašová, Helena. $7 _BN002599
700    1_
$a Glogarová, Kateřina. $7 _AN033985
700    1_
$a Prajerová, Iva $7 xx0108992
700    1_
$a Urdzíková, Lucia $7 xx0136406
700    1_
$a Chvátal, Alexandr, $d 1962- $7 xx0106740
700    1_
$a Syková, Eva, $d 1944- $7 jn20000710633
773    0_
$w MED00194028 $t Journal of neurobiology $g Roč. 66, č. 10 (2006), s. 1084-1100 $x 0022-3034
910    __
$a ABA008 $b x $y 8 $z 0
990    __
$a 20090310084605 $b ABA008
991    __
$a 20180112092614 $b ABA008
999    __
$a ok $b bmc $g 699689 $s 562101
BAS    __
$a 3
BMC    __
$a 2006 $b 66 $c 10 $d 1084-1100 $m Journal of neurobiology $x MED00194028 $i 0022-3034
LZP    __
$a 2009-B4/ipme

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...