-
Je něco špatně v tomto záznamu ?
The role of the S-S bridge in retroviral protease function and virion maturation
Zábranská H, Tůma R, Kluh I, Svatos A, Ruml T, Hrabal R, Pichová I.
Jazyk angličtina Země Velká Británie
- MeSH
- bromkyan metabolismus MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- cystein metabolismus MeSH
- dimerizace MeSH
- disulfidy metabolismus MeSH
- endopeptidasy chemie metabolismus ultrastruktura MeSH
- financování organizované MeSH
- fluorescenční spektrometrie MeSH
- genové produkty gag metabolismus MeSH
- kinetika MeSH
- Masonův-Pfizerův opičí virus enzymologie fyziologie MeSH
- molekulární sekvence - údaje MeSH
- molekulová hmotnost MeSH
- mutantní proteiny chemie metabolismus MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- posttranslační úpravy proteinů MeSH
- replikace viru fyziologie MeSH
- retrovirové infekce MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- stabilita enzymů MeSH
- termodynamika MeSH
- virion fyziologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
Retroviral proteases are translated as a part of Gag-related polyproteins, and are released and activated during particle release. Mason-Pfizer monkey virus (M-PMV) Gag polyproteins assemble into immature capsids within the cytoplasm of the host cells; however, their processing occurs only after transport to the plasma membrane and subsequent release. Thus, the activity of M-PMV protease is expected to be highly regulated during the replication cycle. It has been proposed that reversible oxidation of protease cysteine residues might be responsible for such regulation. We show that cysteine residues in M-PMV protease can form an intramolecular S-S bridge. The disulfide bridge shifts the monomer/dimer equilibrium in favor of the dimer, and increases the proteolytic activity significantly. To investigate the role of this disulfide bridge in virus maturation and replication, we engineered an M-PMV clone in which both protease cysteine residues were replaced by alanine (M-PMV(PRC7A/C106A)). Surprisingly, the cysteine residues were dispensable for Gag polyprotein processing within the virus, indicating that even low levels of protease activity are sufficient for polyprotein processing during maturation. However, the long-term infectivity of M-PMV(PRC7A/C106A) was noticeably compromised. These results show clearly that the proposed redox mechanism does not rely solely on the formation of the stabilizing S-S bridge in the protease. Thus, in addition to the protease disulfide bridge, reversible oxidation of cysteine and/or methionine residues in other domains of the Gag polyprotein or in related cellular proteins must be involved in the regulation of maturation.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc09004012
- 003
- CZ-PrNML
- 005
- 20111210153724.0
- 008
- 091126s2007 xxk e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Zábranská, Helena. $7 xx0303238
- 245 14
- $a The role of the S-S bridge in retroviral protease function and virion maturation / $c Zábranská H, Tůma R, Kluh I, Svatos A, Ruml T, Hrabal R, Pichová I.
- 314 __
- $a Gilead Sciences Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic
- 520 9_
- $a Retroviral proteases are translated as a part of Gag-related polyproteins, and are released and activated during particle release. Mason-Pfizer monkey virus (M-PMV) Gag polyproteins assemble into immature capsids within the cytoplasm of the host cells; however, their processing occurs only after transport to the plasma membrane and subsequent release. Thus, the activity of M-PMV protease is expected to be highly regulated during the replication cycle. It has been proposed that reversible oxidation of protease cysteine residues might be responsible for such regulation. We show that cysteine residues in M-PMV protease can form an intramolecular S-S bridge. The disulfide bridge shifts the monomer/dimer equilibrium in favor of the dimer, and increases the proteolytic activity significantly. To investigate the role of this disulfide bridge in virus maturation and replication, we engineered an M-PMV clone in which both protease cysteine residues were replaced by alanine (M-PMV(PRC7A/C106A)). Surprisingly, the cysteine residues were dispensable for Gag polyprotein processing within the virus, indicating that even low levels of protease activity are sufficient for polyprotein processing during maturation. However, the long-term infectivity of M-PMV(PRC7A/C106A) was noticeably compromised. These results show clearly that the proposed redox mechanism does not rely solely on the formation of the stabilizing S-S bridge in the protease. Thus, in addition to the protease disulfide bridge, reversible oxidation of cysteine and/or methionine residues in other domains of the Gag polyprotein or in related cellular proteins must be involved in the regulation of maturation.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a COS buňky $7 D019556
- 650 _2
- $a Cercopithecus aethiops $7 D002522
- 650 _2
- $a bromkyan $x metabolismus $7 D003488
- 650 _2
- $a cystein $x metabolismus $7 D003545
- 650 _2
- $a dimerizace $7 D019281
- 650 _2
- $a disulfidy $x metabolismus $7 D004220
- 650 _2
- $a endopeptidasy $x chemie $x metabolismus $x ultrastruktura $7 D010450
- 650 _2
- $a stabilita enzymů $7 D004795
- 650 _2
- $a genové produkty gag $x metabolismus $7 D015683
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a Masonův-Pfizerův opičí virus $x enzymologie $x fyziologie $7 D016093
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a molekulová hmotnost $7 D008970
- 650 _2
- $a mutantní proteiny $x chemie $x metabolismus $7 D050505
- 650 _2
- $a nukleární magnetická rezonance biomolekulární $7 D019906
- 650 _2
- $a posttranslační úpravy proteinů $7 D011499
- 650 _2
- $a retrovirové infekce $7 D012192
- 650 _2
- $a sekvenční seřazení $7 D016415
- 650 _2
- $a fluorescenční spektrometrie $7 D013050
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 650 _2
- $a termodynamika $7 D013816
- 650 _2
- $a virion $x fyziologie $7 D014771
- 650 _2
- $a replikace viru $x fyziologie $7 D014779
- 700 1_
- $a Tůma, Roman $7 xx0109551
- 700 1_
- $a Kluh, Ivan $7 xx0109140
- 700 1_
- $a Svatoš, Aleš, $d 1955- $7 xx0097646
- 700 1_
- $a Ruml, Tomáš, $d 1954- $7 nlk20030128618
- 700 1_
- $a Hrabal, Richard, $d 1958- $7 xx0127435
- 700 1_
- $a Pichová, Iva $7 xx0101840
- 773 0_
- $w MED00002808 $t Journal of molecular biology $g Roč. 365, č. 5 (2007), s. 1493-1504 $x 0022-2836
- 910 __
- $a ABA008 $b x $y 8
- 990 __
- $a 20091123115031 $b ABA008
- 991 __
- $a 20091208112839 $b ABA008
- 999 __
- $a ok $b bmc $g 699830 $s 562242
- BAS __
- $a 3
- BMC __
- $a 2007 $b 365 $c 5 $d 1493-1504 $i 0022-2836 $m Journal of Molecular Biology $x MED00002808
- LZP __
- $a 2009-B3/dkme