-
Je něco špatně v tomto záznamu ?
Optimum signal in a diffusion leaky integrate-and-fire neuronal model
Lansky P, Sacerdote L, Zucca C.
Jazyk angličtina Země Spojené státy americké
- MeSH
- akční potenciály fyziologie MeSH
- algoritmy MeSH
- financování organizované MeSH
- lidé MeSH
- membránové potenciály fyziologie MeSH
- modely neurologické MeSH
- nervové vedení fyziologie MeSH
- neurony fyziologie MeSH
- refrakterní doba elektrofyziologická fyziologie MeSH
- stochastické procesy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
An optimum signal in the Ornstein-Uhlenbeck neuronal model is determined on the basis of interspike interval data. Two criteria are proposed for this purpose. The first, the classical one, is based on searching for maxima of the slope of the frequency transfer function. The second one uses maximum of the Fisher information, which is, under certain conditions, the inverse variance of the best possible estimator. The Fisher information is further normalized with respect to the time required to make the observation on which the signal estimation is performed. Three variants of the model are investigated. Beside the basic one, we use the version obtained by inclusion of the refractory period. Finally, we investigate such a version of the model in which signal and the input parameter of the model are in a nonlinear relationship. The results show that despite qualitative similarity between the criteria, there is substantial quantitative difference. As a common feature, we found that in the Ornstein-Uhlenbeck model with increasing noise the optimum signal decreases and the coding range gets broader.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc10001205
- 003
- CZ-PrNML
- 005
- 20111210155150.0
- 008
- 100120s2007 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Lánský, Petr $7 xx0062306
- 245 10
- $a Optimum signal in a diffusion leaky integrate-and-fire neuronal model / $c Lansky P, Sacerdote L, Zucca C.
- 314 __
- $a Institute of Physiology, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. lansky@biomed.cas.cz
- 520 9_
- $a An optimum signal in the Ornstein-Uhlenbeck neuronal model is determined on the basis of interspike interval data. Two criteria are proposed for this purpose. The first, the classical one, is based on searching for maxima of the slope of the frequency transfer function. The second one uses maximum of the Fisher information, which is, under certain conditions, the inverse variance of the best possible estimator. The Fisher information is further normalized with respect to the time required to make the observation on which the signal estimation is performed. Three variants of the model are investigated. Beside the basic one, we use the version obtained by inclusion of the refractory period. Finally, we investigate such a version of the model in which signal and the input parameter of the model are in a nonlinear relationship. The results show that despite qualitative similarity between the criteria, there is substantial quantitative difference. As a common feature, we found that in the Ornstein-Uhlenbeck model with increasing noise the optimum signal decreases and the coding range gets broader.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a membránové potenciály $x fyziologie $7 D008564
- 650 _2
- $a modely neurologické $7 D008959
- 650 _2
- $a nervové vedení $x fyziologie $7 D009431
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a refrakterní doba elektrofyziologická $x fyziologie $7 D012032
- 650 _2
- $a stochastické procesy $7 D013269
- 700 1_
- $a Sacerdote, Laura
- 700 1_
- $a Zucca, Cristina
- 773 0_
- $w MED00003200 $t Mathematical biosciences $g Roč. 207, č. 2 (2007), s. 261-274 $x 0025-5564
- 910 __
- $a ABA008 $b x $y 8
- 990 __
- $a 20090310084605 $b ABA008
- 991 __
- $a 20100120142115 $b ABA008
- 999 __
- $a ok $b bmc $g 707130 $s 569926
- BAS __
- $a 3
- BMC __
- $a 2007 $b 207 $c 2 $d 261-274 $i 0025-5564 $m Mathematical biosciences $x MED00003200
- LZP __
- $a 2010-b1/ipme