• Je něco špatně v tomto záznamu ?

Optimum signal in a diffusion leaky integrate-and-fire neuronal model

Lansky P, Sacerdote L, Zucca C.

. 2007 ; 207 (2) : 261-274.

Jazyk angličtina Země Spojené státy americké

Perzistentní odkaz   https://www.medvik.cz/link/bmc10001205

An optimum signal in the Ornstein-Uhlenbeck neuronal model is determined on the basis of interspike interval data. Two criteria are proposed for this purpose. The first, the classical one, is based on searching for maxima of the slope of the frequency transfer function. The second one uses maximum of the Fisher information, which is, under certain conditions, the inverse variance of the best possible estimator. The Fisher information is further normalized with respect to the time required to make the observation on which the signal estimation is performed. Three variants of the model are investigated. Beside the basic one, we use the version obtained by inclusion of the refractory period. Finally, we investigate such a version of the model in which signal and the input parameter of the model are in a nonlinear relationship. The results show that despite qualitative similarity between the criteria, there is substantial quantitative difference. As a common feature, we found that in the Ornstein-Uhlenbeck model with increasing noise the optimum signal decreases and the coding range gets broader.

000      
00000naa 2200000 a 4500
001      
bmc10001205
003      
CZ-PrNML
005      
20111210155150.0
008      
100120s2007 xxu e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lánský, Petr $7 xx0062306
245    10
$a Optimum signal in a diffusion leaky integrate-and-fire neuronal model / $c Lansky P, Sacerdote L, Zucca C.
314    __
$a Institute of Physiology, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. lansky@biomed.cas.cz
520    9_
$a An optimum signal in the Ornstein-Uhlenbeck neuronal model is determined on the basis of interspike interval data. Two criteria are proposed for this purpose. The first, the classical one, is based on searching for maxima of the slope of the frequency transfer function. The second one uses maximum of the Fisher information, which is, under certain conditions, the inverse variance of the best possible estimator. The Fisher information is further normalized with respect to the time required to make the observation on which the signal estimation is performed. Three variants of the model are investigated. Beside the basic one, we use the version obtained by inclusion of the refractory period. Finally, we investigate such a version of the model in which signal and the input parameter of the model are in a nonlinear relationship. The results show that despite qualitative similarity between the criteria, there is substantial quantitative difference. As a common feature, we found that in the Ornstein-Uhlenbeck model with increasing noise the optimum signal decreases and the coding range gets broader.
650    _2
$a financování organizované $7 D005381
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a lidé $7 D006801
650    _2
$a membránové potenciály $x fyziologie $7 D008564
650    _2
$a modely neurologické $7 D008959
650    _2
$a nervové vedení $x fyziologie $7 D009431
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a refrakterní doba elektrofyziologická $x fyziologie $7 D012032
650    _2
$a stochastické procesy $7 D013269
700    1_
$a Sacerdote, Laura
700    1_
$a Zucca, Cristina
773    0_
$w MED00003200 $t Mathematical biosciences $g Roč. 207, č. 2 (2007), s. 261-274 $x 0025-5564
910    __
$a ABA008 $b x $y 8
990    __
$a 20090310084605 $b ABA008
991    __
$a 20100120142115 $b ABA008
999    __
$a ok $b bmc $g 707130 $s 569926
BAS    __
$a 3
BMC    __
$a 2007 $b 207 $c 2 $d 261-274 $i 0025-5564 $m Mathematical biosciences $x MED00003200
LZP    __
$a 2010-b1/ipme

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...