• Je něco špatně v tomto záznamu ?

Randomness and variability of the neuronal activity described by the Ornstein-Uhlenbeck model

Kostal L, Lansky P, Zucca C.

. 2007 ; 18 (1) : 63-75.

Jazyk angličtina Země Velká Británie

Perzistentní odkaz   https://www.medvik.cz/link/bmc10006942

Normalized entropy as a measure of randomness is explored. It is employed to characterize those properties of neuronal firing that cannot be described by the first two statistical moments. We analyze randomness of firing of the Ornstein-Uhlenbeck (OU) neuronal model with respect either to the variability of interspike intervals (coefficient of variation) or the model parameters. A new form of the Siegert's equation for first-passage time of the OU process is given. The parametric space of the model is divided into two parts (sub-and supra-threshold) depending upon the neuron activity in the absence of noise. In the supra-threshold regime there are many similarities of the model with the Wiener process model. The sub-threshold behavior differs qualitatively both from the Wiener model and from the supra-threshold regime. For very low input the firing regularity increases (due to increase of noise) cannot be observed by employing the entropy, while it is clearly observable by employing the coefficient of variation. Finally, we introduce and quantify the converse effect of firing regularity decrease by employing the normalized entropy.

000      
00000naa 2200000 a 4500
001      
bmc10006942
003      
CZ-PrNML
005      
20111210161129.0
008      
100324s2007 xxk e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Košťál, Lubomír $7 xx0098338
245    10
$a Randomness and variability of the neuronal activity described by the Ornstein-Uhlenbeck model / $c Kostal L, Lansky P, Zucca C.
314    __
$a Institute of Physiology, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. kostal@biomed.cas.cz
520    9_
$a Normalized entropy as a measure of randomness is explored. It is employed to characterize those properties of neuronal firing that cannot be described by the first two statistical moments. We analyze randomness of firing of the Ornstein-Uhlenbeck (OU) neuronal model with respect either to the variability of interspike intervals (coefficient of variation) or the model parameters. A new form of the Siegert's equation for first-passage time of the OU process is given. The parametric space of the model is divided into two parts (sub-and supra-threshold) depending upon the neuron activity in the absence of noise. In the supra-threshold regime there are many similarities of the model with the Wiener process model. The sub-threshold behavior differs qualitatively both from the Wiener model and from the supra-threshold regime. For very low input the firing regularity increases (due to increase of noise) cannot be observed by employing the entropy, while it is clearly observable by employing the coefficient of variation. Finally, we introduce and quantify the converse effect of firing regularity decrease by employing the normalized entropy.
650    _2
$a financování organizované $7 D005381
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a zvířata $7 D000818
650    _2
$a entropie $7 D019277
650    _2
$a modely neurologické $7 D008959
650    _2
$a statistické modely $7 D015233
650    _2
$a neurony $x fyziologie $x klasifikace $7 D009474
650    _2
$a časové faktory $7 D013997
700    1_
$a Lánský, Petr $7 xx0062306
700    1_
$a Zucca, Cristina
773    0_
$w MED00006908 $t Network $g Roč. 18, č. 1 (2007), s. 63-75 $x 0954-898X
910    __
$a ABA008 $b x $y 8
990    __
$a 20100114162108 $b ABA008
991    __
$a 20100324090242 $b ABA008
999    __
$a ok $b bmc $g 716343 $s 579338
BAS    __
$a 3
BMC    __
$a 2007 $b 18 $c 1 $d 63-75 $m Network $x MED00006908
LZP    __
$a 2010-b1/dkme

Najít záznam