-
Je něco špatně v tomto záznamu ?
A multivariate extension of the gene set enrichment analysis
L Klebanov, G Glazko, P Salzman, A Yakovlev, Y Xiao
Jazyk angličtina Země Velká Británie
- MeSH
- fenotyp MeSH
- financování organizované MeSH
- modely genetické MeSH
- multivariační analýza MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů statistika a číselné údaje MeSH
- stanovení celkové genové exprese statistika a číselné údaje MeSH
- výpočetní biologie MeSH
A test-statistic typically employed in the gene set enrichment analysis (GSEA) prevents this method from being genuinely multivariate. In particular, this statistic is insensitive to changes in the correlation structure of the gene sets of interest. The present paper considers the utility of an alternative test-statistic in designing the confirmatory component of the GSEA. This statistic is based on a pertinent distance between joint distributions of expression levels of genes included in the set of interest. The null distribution of the proposed test-statistic, known as the multivariate N-statistic, is obtained by permuting group labels. Our simulation studies and analysis of biological data confirm the conjecture that the N-statistic is a much better choice for multivariate significance testing within the framework of the GSEA. We also discuss some other aspects of the GSEA paradigm and suggest new avenues for future research.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc10026263
- 003
- CZ-PrNML
- 005
- 20111210192305.0
- 008
- 101018s2007 xxk e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Klebanov, Lev. $7 _AN055723
- 245 12
- $a A multivariate extension of the gene set enrichment analysis / $c L Klebanov, G Glazko, P Salzman, A Yakovlev, Y Xiao
- 314 __
- $a Department of Probability and Statistics, Charles University, Sokolovska 83, Praha-8, CZ-18675, Czech Republic. levkleb@yahoo.com
- 520 9_
- $a A test-statistic typically employed in the gene set enrichment analysis (GSEA) prevents this method from being genuinely multivariate. In particular, this statistic is insensitive to changes in the correlation structure of the gene sets of interest. The present paper considers the utility of an alternative test-statistic in designing the confirmatory component of the GSEA. This statistic is based on a pertinent distance between joint distributions of expression levels of genes included in the set of interest. The null distribution of the proposed test-statistic, known as the multivariate N-statistic, is obtained by permuting group labels. Our simulation studies and analysis of biological data confirm the conjecture that the N-statistic is a much better choice for multivariate significance testing within the framework of the GSEA. We also discuss some other aspects of the GSEA paradigm and suggest new avenues for future research.
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a stanovení celkové genové exprese $x statistika a číselné údaje $7 D020869
- 650 _2
- $a modely genetické $7 D008957
- 650 _2
- $a multivariační analýza $7 D015999
- 650 _2
- $a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $x statistika a číselné údaje $7 D020411
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Glazko, Galina
- 700 1_
- $a Salzman, Peter
- 700 1_
- $a Yakovlev, Andrei
- 700 1_
- $a Xiao, Yuanhui
- 773 0_
- $w MED00008000 $t Journal of bioinformatics and computational biology $g Roč. 5, č. 5 (2007), s. 1139-1153 $x 0219-7200
- 910 __
- $a ABA008 $b x $y 7
- 990 __
- $a 20101116090114 $b ABA008
- 991 __
- $a 20101205100239 $b ABA008
- 999 __
- $a ok $b bmc $g 801368 $s 666113
- BAS __
- $a 3
- BMC __
- $a 2007 $b 5 $c 5 $d 1139-1153 $i 0219-7200 $m Journal of bioinformatics and computational biology $n J Bioinform Comput Biol $x MED00008000
- LZP __
- $a 2010-B/jtme