• Je něco špatně v tomto záznamu ?

A multivariate extension of the gene set enrichment analysis

L Klebanov, G Glazko, P Salzman, A Yakovlev, Y Xiao

. 2007 ; 5 (5) : 1139-1153.

Jazyk angličtina Země Velká Británie

Perzistentní odkaz   https://www.medvik.cz/link/bmc10026263

A test-statistic typically employed in the gene set enrichment analysis (GSEA) prevents this method from being genuinely multivariate. In particular, this statistic is insensitive to changes in the correlation structure of the gene sets of interest. The present paper considers the utility of an alternative test-statistic in designing the confirmatory component of the GSEA. This statistic is based on a pertinent distance between joint distributions of expression levels of genes included in the set of interest. The null distribution of the proposed test-statistic, known as the multivariate N-statistic, is obtained by permuting group labels. Our simulation studies and analysis of biological data confirm the conjecture that the N-statistic is a much better choice for multivariate significance testing within the framework of the GSEA. We also discuss some other aspects of the GSEA paradigm and suggest new avenues for future research.

000      
00000naa 2200000 a 4500
001      
bmc10026263
003      
CZ-PrNML
005      
20111210192305.0
008      
101018s2007 xxk e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Klebanov, Lev. $7 _AN055723
245    12
$a A multivariate extension of the gene set enrichment analysis / $c L Klebanov, G Glazko, P Salzman, A Yakovlev, Y Xiao
314    __
$a Department of Probability and Statistics, Charles University, Sokolovska 83, Praha-8, CZ-18675, Czech Republic. levkleb@yahoo.com
520    9_
$a A test-statistic typically employed in the gene set enrichment analysis (GSEA) prevents this method from being genuinely multivariate. In particular, this statistic is insensitive to changes in the correlation structure of the gene sets of interest. The present paper considers the utility of an alternative test-statistic in designing the confirmatory component of the GSEA. This statistic is based on a pertinent distance between joint distributions of expression levels of genes included in the set of interest. The null distribution of the proposed test-statistic, known as the multivariate N-statistic, is obtained by permuting group labels. Our simulation studies and analysis of biological data confirm the conjecture that the N-statistic is a much better choice for multivariate significance testing within the framework of the GSEA. We also discuss some other aspects of the GSEA paradigm and suggest new avenues for future research.
650    _2
$a výpočetní biologie $7 D019295
650    _2
$a stanovení celkové genové exprese $x statistika a číselné údaje $7 D020869
650    _2
$a modely genetické $7 D008957
650    _2
$a multivariační analýza $7 D015999
650    _2
$a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $x statistika a číselné údaje $7 D020411
650    _2
$a fenotyp $7 D010641
650    _2
$a financování organizované $7 D005381
700    1_
$a Glazko, Galina
700    1_
$a Salzman, Peter
700    1_
$a Yakovlev, Andrei
700    1_
$a Xiao, Yuanhui
773    0_
$w MED00008000 $t Journal of bioinformatics and computational biology $g Roč. 5, č. 5 (2007), s. 1139-1153 $x 0219-7200
910    __
$a ABA008 $b x $y 7
990    __
$a 20101116090114 $b ABA008
991    __
$a 20101205100239 $b ABA008
999    __
$a ok $b bmc $g 801368 $s 666113
BAS    __
$a 3
BMC    __
$a 2007 $b 5 $c 5 $d 1139-1153 $i 0219-7200 $m Journal of bioinformatics and computational biology $n J Bioinform Comput Biol $x MED00008000
LZP    __
$a 2010-B/jtme

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...