• Je něco špatně v tomto záznamu ?

Parameters of spike trains observed in a short time window

Z Pawlas, LB Klebanov, M Prokop, P Lansky

. 2008 ; 20 (5) : 1325-1343.

Jazyk angličtina Země Spojené státy americké

Perzistentní odkaz   https://www.medvik.cz/link/bmc11003181
E-zdroje Online

NLK Medline Complete (EBSCOhost) od 1997-01-01 do Před 1 rokem

We study the estimation of statistical moments of interspike intervals based on observation of spike counts in many independent short time windows. This scenario corresponds to the situation in which a target neuron occurs. It receives information from many neurons and has to respond within a short time interval. The precision of the estimation procedures is examined. As the model for neuronal activity, two examples of stationary point processes are considered: renewal process and doubly stochastic Poisson process. Both moment and maximum likelihood estimators are investigated. Not only the mean but also the coefficient of variation is estimated. In accordance with our expectations, numerical studies confirm that the estimation of mean interspike interval is more reliable than the estimation of coefficient of variation. The error of estimation increases with increasing mean interspike interval, which is equivalent to decreasing the size of window (less events are observed in a window) and with decreasing the number of neurons (lower number of windows).

000      
02165naa 2200277 a 4500
001      
bmc11003181
003      
CZ-PrNML
005      
20121113121952.0
008      
110329s2008 xxu e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Pawlas, Zbyněk, $d 1977- $7 xx0032569
245    10
$a Parameters of spike trains observed in a short time window / $c Z Pawlas, LB Klebanov, M Prokop, P Lansky
314    __
$a Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, 186 75 Prague 8, Czech Republic. pawlas@karlin.mff.cuni.cz
520    9_
$a We study the estimation of statistical moments of interspike intervals based on observation of spike counts in many independent short time windows. This scenario corresponds to the situation in which a target neuron occurs. It receives information from many neurons and has to respond within a short time interval. The precision of the estimation procedures is examined. As the model for neuronal activity, two examples of stationary point processes are considered: renewal process and doubly stochastic Poisson process. Both moment and maximum likelihood estimators are investigated. Not only the mean but also the coefficient of variation is estimated. In accordance with our expectations, numerical studies confirm that the estimation of mean interspike interval is more reliable than the estimation of coefficient of variation. The error of estimation increases with increasing mean interspike interval, which is equivalent to decreasing the size of window (less events are observed in a window) and with decreasing the number of neurons (lower number of windows).
650    _2
$a algoritmy $7 D000465
650    _2
$a modely neurologické $7 D008959
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a financování organizované $7 D005381
700    1_
$a Klebanov, Lev. $7 _AN055723
700    1_
$a Prokop, Martin. $7 ola2017969222
700    1_
$a Lánský, Petr $7 xx0062306
773    0_
$t Neural Computation $w MED00003480 $g Roč. 20, č. 5 (2008), s. 1325-1343 $x 0899-7667
910    __
$a ABA008 $b x $y 7
990    __
$a 20110413115129 $b ABA008
991    __
$a 20121113122007 $b ABA008
999    __
$a ok $b bmc $g 830537 $s 695174
BAS    __
$a 3
BMC    __
$a 2008 $b 20 $c 5 $d 1325-1343 $i 0899-7667 $m Neural computation $n Neural Comput $x MED00003480
LZP    __
$a 2011-2B/ipme

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...