-
Je něco špatně v tomto záznamu ?
Second step of hydrolytic dehalogenation in haloalkane dehalogenase investigated by QM/MM methods
M Otyepka, P Banas, A Magistrato, P Carloni, J Damborsky
Jazyk angličtina Země Spojené státy americké
NLK
Wiley Online Library (archiv)
od 1996-01-01 do 2012-12-31
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- financování organizované MeSH
- halogenace MeSH
- hydrolasy chemie metabolismus MeSH
- hydrolýza MeSH
- katalýza MeSH
- kinetika MeSH
- konformace proteinů MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- Sphingomonas enzymologie metabolismus MeSH
- termodynamika MeSH
- vazebná místa MeSH
Mechanistic studies on the hydrolytic dehalogenation catalyzed by haloalkane dehalogenases are of importance for environmental and industrial applications. Here, Car-Parrinello (CP) and ONIOM hybrid quantum-mechanical/molecular mechanics (QM/MM) are used investigate the second reaction step of the catalytic cycle, which comprises a general base-catalyzed hydrolysis of an ester intermediate (EI) to alcohol and free enzyme. We focus on the enzyme LinB from Sphingomonas paucimobilis UT26, for which the X-ray structure at atomic resolution is available. In agreement with previous proposals, our calculations suggest that a histidine residue (His272), polarized by glutamate (Glu132), acts as a base, accepting a proton from the catalytic water molecule and transferring it to an alcoholate ion. The reaction proceeds through a metastable tetrahedral intermediate, which shows an easily reversed reaction to the EI. In the formation of the products, the protonated aspartic acid (Asp108) can easily adopt conformation of the relaxed state found in the free enzyme. The overall free energy barrier of the reaction calculated by potential of the mean force integration using CP-QM/MM calculations is equal to 19.5 +/- 2 kcal . mol(-1). The lowering of the energy barrier of catalyzed reaction with respect to the water reaction is caused by strong stabilization of the reaction intermediate and transition state and their preorganization by electrostatic field of the enzyme. (c) 2007 Wiley-Liss, Inc.
- 000
- 03067naa 2200433 a 4500
- 001
- bmc11003226
- 003
- CZ-PrNML
- 005
- 20121114095455.0
- 008
- 110225s2008 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Otyepka, Michal, $d 1975- $7 mzk2004257598
- 245 10
- $a Second step of hydrolytic dehalogenation in haloalkane dehalogenase investigated by QM/MM methods / $c M Otyepka, P Banas, A Magistrato, P Carloni, J Damborsky
- 314 __
- $a Department of Physical Chemistry and Center for Biomolecular and Complex Molecular Systems, Palacky University, Olomouc 771 46, Czech Republic.
- 520 9_
- $a Mechanistic studies on the hydrolytic dehalogenation catalyzed by haloalkane dehalogenases are of importance for environmental and industrial applications. Here, Car-Parrinello (CP) and ONIOM hybrid quantum-mechanical/molecular mechanics (QM/MM) are used investigate the second reaction step of the catalytic cycle, which comprises a general base-catalyzed hydrolysis of an ester intermediate (EI) to alcohol and free enzyme. We focus on the enzyme LinB from Sphingomonas paucimobilis UT26, for which the X-ray structure at atomic resolution is available. In agreement with previous proposals, our calculations suggest that a histidine residue (His272), polarized by glutamate (Glu132), acts as a base, accepting a proton from the catalytic water molecule and transferring it to an alcoholate ion. The reaction proceeds through a metastable tetrahedral intermediate, which shows an easily reversed reaction to the EI. In the formation of the products, the protonated aspartic acid (Asp108) can easily adopt conformation of the relaxed state found in the free enzyme. The overall free energy barrier of the reaction calculated by potential of the mean force integration using CP-QM/MM calculations is equal to 19.5 +/- 2 kcal . mol(-1). The lowering of the energy barrier of catalyzed reaction with respect to the water reaction is caused by strong stabilization of the reaction intermediate and transition state and their preorganization by electrostatic field of the enzyme. (c) 2007 Wiley-Liss, Inc.
- 650 _2
- $a bakteriální proteiny $x chemie $x metabolismus $7 D001426
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a katalýza $7 D002384
- 650 _2
- $a halogenace $7 D054879
- 650 _2
- $a hydrolasy $x chemie $x metabolismus $7 D006867
- 650 _2
- $a hydrolýza $7 D006868
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a kvantová teorie $7 D011789
- 650 _2
- $a Sphingomonas $x enzymologie $x metabolismus $7 D020578
- 650 _2
- $a termodynamika $7 D013816
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Banáš, Pavel $7 jx20090907031
- 700 1_
- $a Magistrato, Alessandra
- 700 1_
- $a Carloni, Paolo
- 700 1_
- $a Damborský, Jiří, $d 1969- $7 mzk2006348900
- 773 0_
- $t Proteins $w MED00003938 $g Roč. 70, č. 3 (2008), s. 707-717
- 910 __
- $a ABA008 $b x $y 7
- 990 __
- $a 20110413120132 $b ABA008
- 991 __
- $a 20121114095510 $b ABA008
- 999 __
- $a ok $b bmc $g 831033 $s 695219
- BAS __
- $a 3
- BMC __
- $a 2008 $b 70 $c 3 $d 707-717 $m Proteins $n Proteins $x MED00003938
- LZP __
- $a 2011-2B/ipme