-
Je něco špatně v tomto záznamu ?
Iterative principles of recognition in probabilistic neural networks
J Grim, J Hora
Jazyk angličtina Země Spojené státy americké
Typ dokumentu práce podpořená grantem
NLK
ScienceDirect (archiv)
od 1993-01-01 do 2009-12-31
- MeSH
- algoritmy MeSH
- lidé MeSH
- nervová síť MeSH
- neuronové sítě MeSH
- neurony fyziologie MeSH
- rozpoznávání (psychologie) MeSH
- rozpoznávání automatizované MeSH
- rozpoznávání obrazu fyziologie MeSH
- statistické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
When considering the probabilistic approach to neural networks in the framework of statistical pattern recognition we assume approximation of class-conditional probability distributions by finite mixtures of product components. The mixture components can be interpreted as probabilistic neurons in neurophysiological terms and, in this respect, the fixed probabilistic description contradicts the well known short-term dynamic properties of biological neurons. By introducing iterative schemes of recognition we show that some parameters of probabilistic neural networks can be "released" for the sake of dynamic processes without disturbing the statistically correct decision making. In particular, we can iteratively adapt the mixture component weights or modify the input pattern in order to facilitate correct recognition. Both procedures are shown to converge monotonically as a special case of the well known EM algorithm for estimating mixtures.
- 000
- 02171naa 2200325 a 4500
- 001
- bmc11006398
- 003
- CZ-PrNML
- 005
- 20121113122311.0
- 008
- 110401s2008 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Grim, Jiří. $7 _AN062545
- 245 10
- $a Iterative principles of recognition in probabilistic neural networks / $c J Grim, J Hora
- 314 __
- $a Institute of Information Theory and Automation, Czech Academy of Sciences P.O. BOX 18, CZ-18208 Prague 8, Czech Republic. grim@utia.cas.cz
- 520 9_
- $a When considering the probabilistic approach to neural networks in the framework of statistical pattern recognition we assume approximation of class-conditional probability distributions by finite mixtures of product components. The mixture components can be interpreted as probabilistic neurons in neurophysiological terms and, in this respect, the fixed probabilistic description contradicts the well known short-term dynamic properties of biological neurons. By introducing iterative schemes of recognition we show that some parameters of probabilistic neural networks can be "released" for the sake of dynamic processes without disturbing the statistically correct decision making. In particular, we can iteratively adapt the mixture component weights or modify the input pattern in order to facilitate correct recognition. Both procedures are shown to converge monotonically as a special case of the well known EM algorithm for estimating mixtures.
- 590 __
- $a bohemika - dle Pubmed
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a nervová síť $7 D009415
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a rozpoznávání automatizované $7 D010363
- 650 _2
- $a rozpoznávání obrazu $x fyziologie $7 D010364
- 650 _2
- $a rozpoznávání (psychologie) $7 D021641
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1#
- $a Hora, Jan. $7 xx0278918
- 773 0_
- $t Neural Networks $w MED00011811 $g Roč. 21, č. 6 (2008), s. 838-846 $x 0893-6080
- 910 __
- $a ABA008 $b x $y 2
- 990 __
- $a 20110414103000 $b ABA008
- 991 __
- $a 20121113122326 $b ABA008
- 999 __
- $a ok $b bmc $g 833992 $s 698499
- BAS __
- $a 3
- BMC __
- $a 2008 $b 21 $c 6 $d 838-846 $i 0893-6080 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a 2011-1B09/jjme