• Je něco špatně v tomto záznamu ?

Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane

L. Biedermannová, Riley K. E., K. Berka, P. Hobza, J.Vondrášek

. 2008 ; 10 (42) : 6350-6359.

Jazyk angličtina Země Velká Británie

Perzistentní odkaz   https://www.medvik.cz/link/bmc11006758

Proline-tryptophan complexes derived from experimental structures are investigated by quantum chemical procedures known to properly describe the London dispersion energy. We study two geometrical arrangements: the "L-shaped", stabilized by an H-bond, and the "stacked-like", where the two residues are in parallel orientation without any H-bond. Interestingly, the interaction energies in both cases are comparable and very large ( approximately 7 kcal mol(-1)). The strength of stabilization in the stacked arrangement is rather surprising considering the fact that only one partner has an aromatic character. The interaction energy decomposition using the SAPT method further demonstrates the very important role of dispersion energy in such arrangement. To elucidate the structural features responsible for this unexpectedly large stabilization we examined the role of the nitrogen heteroatom and the importance of the cyclicity of the proline residue. We show that the electrostatic interaction due to the presence of the dipole, caused by the nitrogen heteroatom, contributes largely to the strength of the interaction. Nevertheless, the cyclic arrangement of proline, which allows for the largest amount of dispersive contact with the aromatic partner, also has a notable-effect. Geometry optimizations carried out for the "stacked-like" complexes show that the arrangements derived from protein structure are close to their gas phase optimum geometry, suggesting that the environment has only a minor effect on the geometry of the interaction. We conclude that the strength of proline non-covalent interactions, combined with this residue's rigidity, might be the explanation for its prominent role in protein stabilization and recognition processes.

000      
03440naa 2200409 a 4500
001      
bmc11006758
003      
CZ-PrNML
005      
20201110124514.0
008      
110405s2008 xxk e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Biedermannová, Lada. $7 xx0195700
245    10
$a Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane / $c L. Biedermannová, Riley K. E., K. Berka, P. Hobza, J.Vondrášek
314    __
$a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic.
520    9_
$a Proline-tryptophan complexes derived from experimental structures are investigated by quantum chemical procedures known to properly describe the London dispersion energy. We study two geometrical arrangements: the "L-shaped", stabilized by an H-bond, and the "stacked-like", where the two residues are in parallel orientation without any H-bond. Interestingly, the interaction energies in both cases are comparable and very large ( approximately 7 kcal mol(-1)). The strength of stabilization in the stacked arrangement is rather surprising considering the fact that only one partner has an aromatic character. The interaction energy decomposition using the SAPT method further demonstrates the very important role of dispersion energy in such arrangement. To elucidate the structural features responsible for this unexpectedly large stabilization we examined the role of the nitrogen heteroatom and the importance of the cyclicity of the proline residue. We show that the electrostatic interaction due to the presence of the dipole, caused by the nitrogen heteroatom, contributes largely to the strength of the interaction. Nevertheless, the cyclic arrangement of proline, which allows for the largest amount of dispersive contact with the aromatic partner, also has a notable-effect. Geometry optimizations carried out for the "stacked-like" complexes show that the arrangements derived from protein structure are close to their gas phase optimum geometry, suggesting that the environment has only a minor effect on the geometry of the interaction. We conclude that the strength of proline non-covalent interactions, combined with this residue's rigidity, might be the explanation for its prominent role in protein stabilization and recognition processes.
650    _2
$a fyzikální chemie $x metody $7 D002627
650    _2
$a vodíková vazba $7 D006860
650    _2
$a ligandy $7 D008024
650    _2
$a chemické modely $7 D008956
650    _2
$a molekulární konformace $7 D008968
650    _2
$a prolin $x chemie $7 D011392
650    _2
$a vazba proteinů $7 D011485
650    _2
$a konformace proteinů $7 D011487
650    _2
$a mapování interakce mezi proteiny $7 D025941
650    _2
$a terciární struktura proteinů $7 D017434
650    _2
$a proteiny $x chemie $7 D011506
650    _2
$a statická elektřina $7 D055672
650    _2
$a tryptofan $x chemie $7 D014364
650    _2
$a financování organizované $7 D005381
700    1_
$a Reiley, E Kevin
700    1_
$a Berka, Karel, $d 1982- $7 ola2015878473
700    1_
$a Hobza, Pavel, $d 1946- $7 jk01041427
700    1_
$a Vondrášek, Jiří, $d 1963- $7 jo2005274206
773    0_
$t Physical Chemistry Chemical Physics $w MED00008271 $g Roč. 10, č. 42 (2008), s. 6350-6359 $x 1463-9076
910    __
$a ABA008 $b x $y 7 $z 0
990    __
$a 20110412130327 $b ABA008
991    __
$a 20201110124510 $b ABA008
999    __
$a ok $b bmc $g 834382 $s 698875
BAS    __
$a 3
BMC    __
$a 2008 $b 10 $c 42 $d 6350-6359 $i 1463-9076 $m PCCP. Physical chemistry chemical physics $n Phys Chem Chem Phys $x MED00008271
LZP    __
$a 2011-4B/ewme

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...