Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions

S.L. Brazdilova, M. Kozubek

. 2009 ; 236 (3) : 194-202.

Jazyk angličtina Země Velká Británie

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12008670
E-zdroje

NLK Medline Complete (EBSCOhost) od 1998-01-01 do Před 1 rokem
Wiley Online Library (archiv) od 1997-01-01 do 2012-12-31
Wiley Free Content od 1997 do Před 3 lety

We present a new algorithm to analyse information content in images acquired using automated fluorescence microscopy. The algorithm belongs to the group of autofocusing methods, but differs from its predecessors in that it can handle thick specimens and operate also in confocal mode. It measures the information content in images using a 'content function', which is essentially the same concept as a focus function. Unlike previously presented algorithms, this algorithm tries to find all significant axial positions in cases where the content function applied to real data is not unimodal, which is often the case. This requirement precludes using algorithms that rely on unimodality. Moreover, choosing a content function requires careful consideration, because some functions suppress local maxima. First, we test 19 content functions and evaluate their ability to show local maxima clearly. The results show that only six content functions succeed. To save time, the acquisition procedure needs to vary the step size adaptively, because a wide range of possible axial positions has to be passed so as not to miss a local maximum. The algorithm therefore has to assess the steepness of the content function online so that it can decide to use a bigger or smaller step size to acquire the next image. Therefore, the algorithm needs to know about typical behaviour of content functions. We show that for normalized variance, one of the most promising content functions, this knowledge can be obtained after normalizing with respect to the theoretical maximum of this function, and using hierarchical clustering. The resulting algorithm is more reliable and efficient than a simple procedure with constant steps.

000      
02942naa a2200313 a 4500
001      
bmc12008670
003      
CZ-PrNML
005      
20121123120128.0
008      
120316s2009 xxk eng||
009      
AR
040    __
$a ABA008 $b cze $d ABA008
041    0_
$a eng
044    __
$a xxk
100    1_
$a Brázdilová, Silvie Luisa. $7 mub2011649484 $u Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Botanicka 68a, Brno, Czech Republic.
245    10
$a Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions / $c S.L. Brazdilova, M. Kozubek
520    9_
$a We present a new algorithm to analyse information content in images acquired using automated fluorescence microscopy. The algorithm belongs to the group of autofocusing methods, but differs from its predecessors in that it can handle thick specimens and operate also in confocal mode. It measures the information content in images using a 'content function', which is essentially the same concept as a focus function. Unlike previously presented algorithms, this algorithm tries to find all significant axial positions in cases where the content function applied to real data is not unimodal, which is often the case. This requirement precludes using algorithms that rely on unimodality. Moreover, choosing a content function requires careful consideration, because some functions suppress local maxima. First, we test 19 content functions and evaluate their ability to show local maxima clearly. The results show that only six content functions succeed. To save time, the acquisition procedure needs to vary the step size adaptively, because a wide range of possible axial positions has to be passed so as not to miss a local maximum. The algorithm therefore has to assess the steepness of the content function online so that it can decide to use a bigger or smaller step size to acquire the next image. Therefore, the algorithm needs to know about typical behaviour of content functions. We show that for normalized variance, one of the most promising content functions, this knowledge can be obtained after normalizing with respect to the theoretical maximum of this function, and using hierarchical clustering. The resulting algorithm is more reliable and efficient than a simple procedure with constant steps.
590    __
$a bohemika - dle Pubmed
650    02
$a algoritmy $7 D000465
650    02
$a zvířata $7 D000818
650    02
$a buněčné jádro $x ultrastruktura $7 D002467
650    02
$a fibroblasty $x ultrastruktura $7 D005347
650    02
$a lidé $7 D006801
650    02
$a počítačové zpracování obrazu $x metody $7 D007091
650    02
$a fluorescenční mikroskopie $x metody $7 D008856
650    02
$a on-line systémy $7 D009862
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kozubek, Michal, $d 1974- $7 ola2003204934
773    0_
$t Journal of Microscopy $p J Microsc $g Roč. 236, č. 3 (2009), s. 194-202 $w MED00002805 $x 0020-8868
773    0_
$p J Microsc $g 236(3):194-202, 2009 Dec
910    __
$a ABA008 $b x $y 4
990    __
$a 20120319124616 $b ABA008
991    __
$a 20121123120151 $b ABA008
999    __
$a ok $b bmc $g 902012 $s 765566
BAS    __
$a 3
BMC    __
$a 2009 $b 236 $c 3 $d 194-202 $m Journal of microscopy $x MED00002805
LZP    __
$a 2012-1Q10/

Najít záznam