-
Je něco špatně v tomto záznamu ?
Raster image correlation spectroscopy as a novel tool to study interactions of macromolecules with nanofiber scaffolds
SC. Norris, J. Humpolíčková, E. Amler, M. Huranová, M. Buzgo, R. Macháň, D. Lukáš, M. Hof
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- difuze MeSH
- nanovlákna MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dynamic processes such as diffusion and binding/unbinding of macromolecules (e.g. growth factors or nutrients) are crucial parameters for the design and application of effective artificial tissue materials. Here, dynamics of selected macromolecules were studied in two different composite tissue engineering scaffolds containing an electrospun nanofiber mesh (polycaprolactone or hydrophobically plasma modified polyvinylalcohol-chitosan) encapsulated in agarose hydrogels by a conventional approach fluorescence recovery after photobleaching (FRAP) and a novel technique, raster image correlation spectroscopy (RICS). The two approaches are compared, and it is shown that FRAP is unable to determine processes occurring at low molecular concentrations, especially accurately separating binding/unbinding from diffusion, and its results depend on the concentration of the studied molecules. RICS measures processes of single molecules and, because of its multiple adjustable timescales, can distinguish whether diffusion or binding controls molecular movement and separates fast diffusion from slow transient binding. In addition, RICS provides a robust read-out parameter quantifying binding affinity. Finally, the combination of FRAP and RICS helps to characterize diffusion and binding of macromolecules in tested artificial tissues better, and therefore predicts the behavior of biologically active molecules in these materials for medical applications.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12022069
- 003
- CZ-PrNML
- 005
- 20121206102952.0
- 007
- ta
- 008
- 120806e20110714xxk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.actbio.2011.07.012 $2 doi
- 035 __
- $a (PubMed)21801861
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Norris, S. C. P. $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic.
- 245 10
- $a Raster image correlation spectroscopy as a novel tool to study interactions of macromolecules with nanofiber scaffolds / $c SC. Norris, J. Humpolíčková, E. Amler, M. Huranová, M. Buzgo, R. Macháň, D. Lukáš, M. Hof
- 520 9_
- $a Dynamic processes such as diffusion and binding/unbinding of macromolecules (e.g. growth factors or nutrients) are crucial parameters for the design and application of effective artificial tissue materials. Here, dynamics of selected macromolecules were studied in two different composite tissue engineering scaffolds containing an electrospun nanofiber mesh (polycaprolactone or hydrophobically plasma modified polyvinylalcohol-chitosan) encapsulated in agarose hydrogels by a conventional approach fluorescence recovery after photobleaching (FRAP) and a novel technique, raster image correlation spectroscopy (RICS). The two approaches are compared, and it is shown that FRAP is unable to determine processes occurring at low molecular concentrations, especially accurately separating binding/unbinding from diffusion, and its results depend on the concentration of the studied molecules. RICS measures processes of single molecules and, because of its multiple adjustable timescales, can distinguish whether diffusion or binding controls molecular movement and separates fast diffusion from slow transient binding. In addition, RICS provides a robust read-out parameter quantifying binding affinity. Finally, the combination of FRAP and RICS helps to characterize diffusion and binding of macromolecules in tested artificial tissues better, and therefore predicts the behavior of biologically active molecules in these materials for medical applications.
- 650 _2
- $a difuze $7 D004058
- 650 _2
- $a nanovlákna $7 D057139
- 650 _2
- $a vazba proteinů $7 D011485
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Humpolíčková, Jana. $7 xx0274004
- 700 1_
- $a Amler, Evžen, $d 1958- $7 xx0014074
- 700 1_
- $a Huranová, Martina $7 xx0140541
- 700 1_
- $a Buzgo, Matej. $7 xx0255533
- 700 1_
- $a Macháň, Radek $7 ola2011675548
- 700 1_
- $a Lukáš, David, $d 1958- $7 xx0000188
- 700 1_
- $a Hof, Martin, $d 1962- $7 ntka172581
- 773 0_
- $w MED00008542 $t Acta biomaterialia $x 1742-7061 $g Roč. 7, č. 12 (20110714), s. 4195-4203
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21801861 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120806 $b ABA008
- 991 __
- $a 20121206103025 $b ABA008
- 999 __
- $a ok $b bmc $g 943982 $s 779366
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 7 $c 12 $d 4195-4203 $e 20110714 $i 1742-7061 $m Acta biomaterialia $n Acta Biomater $x MED00008542
- LZP __
- $a Pubmed-20120806/12/01/jt