• Je něco špatně v tomto záznamu ?

Raster image correlation spectroscopy as a novel tool to study interactions of macromolecules with nanofiber scaffolds

SC. Norris, J. Humpolíčková, E. Amler, M. Huranová, M. Buzgo, R. Macháň, D. Lukáš, M. Hof

. 2011 ; 7 (12) : 4195-4203. [pub] 20110714

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12022069

Dynamic processes such as diffusion and binding/unbinding of macromolecules (e.g. growth factors or nutrients) are crucial parameters for the design and application of effective artificial tissue materials. Here, dynamics of selected macromolecules were studied in two different composite tissue engineering scaffolds containing an electrospun nanofiber mesh (polycaprolactone or hydrophobically plasma modified polyvinylalcohol-chitosan) encapsulated in agarose hydrogels by a conventional approach fluorescence recovery after photobleaching (FRAP) and a novel technique, raster image correlation spectroscopy (RICS). The two approaches are compared, and it is shown that FRAP is unable to determine processes occurring at low molecular concentrations, especially accurately separating binding/unbinding from diffusion, and its results depend on the concentration of the studied molecules. RICS measures processes of single molecules and, because of its multiple adjustable timescales, can distinguish whether diffusion or binding controls molecular movement and separates fast diffusion from slow transient binding. In addition, RICS provides a robust read-out parameter quantifying binding affinity. Finally, the combination of FRAP and RICS helps to characterize diffusion and binding of macromolecules in tested artificial tissues better, and therefore predicts the behavior of biologically active molecules in these materials for medical applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12022069
003      
CZ-PrNML
005      
20121206102952.0
007      
ta
008      
120806e20110714xxk f 000 0#eng||
009      
AR
024    7_
$a 10.1016/j.actbio.2011.07.012 $2 doi
035    __
$a (PubMed)21801861
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Norris, S. C. P. $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic.
245    10
$a Raster image correlation spectroscopy as a novel tool to study interactions of macromolecules with nanofiber scaffolds / $c SC. Norris, J. Humpolíčková, E. Amler, M. Huranová, M. Buzgo, R. Macháň, D. Lukáš, M. Hof
520    9_
$a Dynamic processes such as diffusion and binding/unbinding of macromolecules (e.g. growth factors or nutrients) are crucial parameters for the design and application of effective artificial tissue materials. Here, dynamics of selected macromolecules were studied in two different composite tissue engineering scaffolds containing an electrospun nanofiber mesh (polycaprolactone or hydrophobically plasma modified polyvinylalcohol-chitosan) encapsulated in agarose hydrogels by a conventional approach fluorescence recovery after photobleaching (FRAP) and a novel technique, raster image correlation spectroscopy (RICS). The two approaches are compared, and it is shown that FRAP is unable to determine processes occurring at low molecular concentrations, especially accurately separating binding/unbinding from diffusion, and its results depend on the concentration of the studied molecules. RICS measures processes of single molecules and, because of its multiple adjustable timescales, can distinguish whether diffusion or binding controls molecular movement and separates fast diffusion from slow transient binding. In addition, RICS provides a robust read-out parameter quantifying binding affinity. Finally, the combination of FRAP and RICS helps to characterize diffusion and binding of macromolecules in tested artificial tissues better, and therefore predicts the behavior of biologically active molecules in these materials for medical applications.
650    _2
$a difuze $7 D004058
650    _2
$a nanovlákna $7 D057139
650    _2
$a vazba proteinů $7 D011485
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Humpolíčková, Jana. $7 xx0274004
700    1_
$a Amler, Evžen, $d 1958- $7 xx0014074
700    1_
$a Huranová, Martina $7 xx0140541
700    1_
$a Buzgo, Matej. $7 xx0255533
700    1_
$a Macháň, Radek $7 ola2011675548
700    1_
$a Lukáš, David, $d 1958- $7 xx0000188
700    1_
$a Hof, Martin, $d 1962- $7 ntka172581
773    0_
$w MED00008542 $t Acta biomaterialia $x 1742-7061 $g Roč. 7, č. 12 (20110714), s. 4195-4203
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21801861 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m
990    __
$a 20120806 $b ABA008
991    __
$a 20121206103025 $b ABA008
999    __
$a ok $b bmc $g 943982 $s 779366
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 7 $c 12 $d 4195-4203 $e 20110714 $i 1742-7061 $m Acta biomaterialia $n Acta Biomater $x MED00008542
LZP    __
$a Pubmed-20120806/12/01/jt

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...