• Je něco špatně v tomto záznamu ?

The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis

P. Rada, P. Doležal, PL. Jedelský, D. Bursac, AJ. Perry, M. Šedinová, K. Smíšková, M. Novotný, NC. Beltrán, I. Hrdý, T. Lithgow, J. Tachezy,

. 2011 ; 6 (9) : e24428. [pub] 20110915

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12022561

Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM) and inner membrane (TIM) protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the β-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences that reflect the functional adaptation of hydrogenosomes to anaerobic conditions and the peculiar evolutionary history of the Excavata group.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12022561
003      
CZ-PrNML
005      
20121207112938.0
007      
ta
008      
120806e20110915xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0024428 $2 doi
035    __
$a (PubMed)21935410
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Rada, Petr $u Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic.
245    14
$a The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis / $c P. Rada, P. Doležal, PL. Jedelský, D. Bursac, AJ. Perry, M. Šedinová, K. Smíšková, M. Novotný, NC. Beltrán, I. Hrdý, T. Lithgow, J. Tachezy,
520    9_
$a Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM) and inner membrane (TIM) protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the β-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences that reflect the functional adaptation of hydrogenosomes to anaerobic conditions and the peculiar evolutionary history of the Excavata group.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a biologický transport $x fyziologie $7 D001692
650    _2
$a gelová chromatografie $7 D002850
650    _2
$a elektroforéza v polyakrylamidovém gelu $7 D004591
650    _2
$a membránové proteiny $x chemie $x metabolismus $7 D008565
650    _2
$a mitochondrie $x metabolismus $7 D008928
650    _2
$a molekulární sekvence - údaje $7 D008969
650    _2
$a organely $x metabolismus $7 D015388
650    _2
$a poriny $x metabolismus $7 D018272
650    _2
$a protozoální proteiny $x chemie $x metabolismus $7 D015800
650    _2
$a sekvenční homologie aminokyselin $7 D017386
650    _2
$a Trichomonas vaginalis $x metabolismus $7 D014246
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Doležal, Pavel
700    1_
$a Jedelský, Petr L
700    1_
$a Bursac, Dejan
700    1_
$a Perry, Andrew J
700    1_
$a Šedinová, Miroslava
700    1_
$a Smíšková, Kateřina
700    1_
$a Novotný, Marian
700    1_
$a Beltrán, Neritza Campo
700    1_
$a Hrdý, Ivan
700    1_
$a Lithgow, Trevor
700    1_
$a Tachezy, Jan
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 6, č. 9 (20110915), s. e24428
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21935410 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m
990    __
$a 20120806 $b ABA008
991    __
$a 20121207113012 $b ABA008
999    __
$a ok $b bmc $g 944474 $s 779858
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 6 $c 9 $d e24428 $e 20110915 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20120806/12/01

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...