-
Je něco špatně v tomto záznamu ?
Comparison of behavior-based and planning techniques on the small robot maze exploration problem
S. Slušný, R. Neruda, P. Vidnerová
Jazyk angličtina Země Spojené státy americké
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- bludiště - učení MeSH
- neuronové sítě MeSH
- pátrací chování MeSH
- pohybová aktivita MeSH
- posilování (psychologie) MeSH
- prostorové chování MeSH
- robotika MeSH
- umělá inteligence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
A comparison of behavior-based and planning approaches of robot control is presented in this paper. We focus on miniature mobile robotic agents with limited sensory abilities. Two reactive control mechanisms for an agent are considered-a radial basis function neural network trained by evolutionary algorithm and a traditional reinforcement learning algorithm over a finite agent state space. The control architecture based on localization and planning is compared to the former method.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12025105
- 003
- CZ-PrNML
- 005
- 20130311151345.0
- 007
- ta
- 008
- 120816e20100210xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neunet.2010.02.001 $2 doi
- 035 __
- $a (PubMed)20346859
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Slušný, Stanislav. $7 _AN071734 $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou Vezí 2, Prague 8, Czech Republic. slusny@cs.cas.cz
- 245 10
- $a Comparison of behavior-based and planning techniques on the small robot maze exploration problem / $c S. Slušný, R. Neruda, P. Vidnerová
- 520 9_
- $a A comparison of behavior-based and planning approaches of robot control is presented in this paper. We focus on miniature mobile robotic agents with limited sensory abilities. Two reactive control mechanisms for an agent are considered-a radial basis function neural network trained by evolutionary algorithm and a traditional reinforcement learning algorithm over a finite agent state space. The control architecture based on localization and planning is compared to the former method.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a pátrací chování $7 D005106
- 650 _2
- $a bludiště - učení $7 D018782
- 650 _2
- $a pohybová aktivita $7 D009043
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a posilování (psychologie) $7 D012054
- 650 _2
- $a robotika $7 D012371
- 650 _2
- $a prostorové chování $7 D013037
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Neruda, Roman
- 700 1_
- $a Vidnerová, Petra
- 773 0_
- $w MED00011811 $t Neural networks : the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 23, č. 4 (20100210), s. 560-567
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20346859 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20130311151559 $b ABA008
- 999 __
- $a ok $b bmc $g 947147 $s 782451
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 23 $c 4 $d 560-567 $e 20100210 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a Pubmed-20120816/10/02