-
Something wrong with this record ?
The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells
M. Huranová, I. Ivani, A. Benda, I. Poser, Y. Brody, M. Hof, Y. Shav-Tal, KM. Neugebauer, D. Stanek,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1962 to 6 months ago
Freely Accessible Science Journals
from 1962 to 6 months ago
Europe PubMed Central
from 1962 to 6 months ago
Open Access Digital Library
from 1955-01-25
Open Access Digital Library
from 1959-01-01
Open Access Digital Library
from 1962-01-01
Medline Complete (EBSCOhost)
from 2005-03-28 to 2011-09-19
PubMed
20921136
DOI
10.1083/jcb.201004030
Knihovny.cz E-resources
- MeSH
- Cell Nucleus metabolism MeSH
- Cell Line MeSH
- Spectrometry, Fluorescence MeSH
- Fluorescence Recovery After Photobleaching MeSH
- HeLa Cells MeSH
- Kinetics MeSH
- Humans MeSH
- RNA, Messenger metabolism MeSH
- RNA Precursors metabolism MeSH
- Ribonucleoproteins, Small Nuclear metabolism physiology MeSH
- RNA Splicing physiology MeSH
- Spliceosomes metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15-30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026088
- 003
- CZ-PrNML
- 005
- 20121210105031.0
- 007
- ta
- 008
- 120817s2010 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1083/jcb.201004030 $2 doi
- 035 __
- $a (PubMed)20921136
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Huranová, Martina $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic.
- 245 14
- $a The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells / $c M. Huranová, I. Ivani, A. Benda, I. Poser, Y. Brody, M. Hof, Y. Shav-Tal, KM. Neugebauer, D. Stanek,
- 520 9_
- $a Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15-30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a buněčné jádro $x metabolismus $7 D002467
- 650 _2
- $a FRAP $7 D036681
- 650 _2
- $a HeLa buňky $7 D006367
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a prekurzory RNA $x metabolismus $7 D012322
- 650 _2
- $a sestřih RNA $x fyziologie $7 D012326
- 650 _2
- $a messenger RNA $x metabolismus $7 D012333
- 650 _2
- $a ribonukleoproteiny malé jaderné $x metabolismus $x fyziologie $7 D017411
- 650 _2
- $a fluorescenční spektrometrie $7 D013050
- 650 _2
- $a spliceozomy $x metabolismus $7 D017381
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Ivani, Ivan
- 700 1_
- $a Benda, Ales
- 700 1_
- $a Poser, Ina
- 700 1_
- $a Brody, Yehuda
- 700 1_
- $a Hof, Martin
- 700 1_
- $a Shav-Tal, Yaron
- 700 1_
- $a Neugebauer, Karla M
- 700 1_
- $a Stanek, David
- 773 0_
- $w MED00002575 $t The Journal of cell biology $x 1540-8140 $g Roč. 191, č. 1 (2010), s. 75-86
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20921136 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20121210105107 $b ABA008
- 999 __
- $a ok $b bmc $g 948130 $s 783434
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 191 $c 1 $d 75-86 $i 1540-8140 $m The Journal of cell biology $n J Cell Biol $x MED00002575
- LZP __
- $a Pubmed-20120817/10/04