-
Something wrong with this record ?
The effects of membrane compartmentalization of csk on TCR signaling
P. Otáhal, S. Pata, P. Angelisová, V. Hořejší, T. Brdička
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Cell Membrane metabolism MeSH
- Phosphorylation MeSH
- Immunoblotting MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Membrane Microdomains MeSH
- Proto-Oncogene Proteins metabolism MeSH
- Receptors, Antigen, T-Cell metabolism MeSH
- Signal Transduction MeSH
- Protein-Tyrosine Kinases metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The TCR signal transduction is initiated by the activation of Src-family kinases (SFK) which phosphorylate Immunoreceptor tyrosine-based activation motifs (ITAM) present in the intracellular parts of the T-cell receptor (TCR) signaling subunits. Numerous data suggest that after stimulation TCR interacts with membrane rafts and thus it gains access to SFK and other important molecules involved in signal transduction. However, the precise mechanism of this process is unclear. One of the key questions is how SFK access TCR and what is the importance of non-raft and membrane raft-associated SFK for the initiation and maintenance of the TCR signaling. To answer this question we targeted a negative regulator of SFK, C-terminal Src kinase (Csk) to membrane rafts, recently described "heavy rafts" or non-raft membrane. Our data show that only Csk targeted into "classical" raft but not to "heavy raft" or non-raft membrane effectively inhibits TCR signaling, demonstrating the critical role of membrane raft-associated SFK in this process.
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Prague
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Prague Czech Republic
Institute of Molecular Genetics AS CR Prague Czech Republic
Institute of Molecular Genetics Czechoslovak Academy of Sciences Praha
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026588
- 003
- CZ-PrNML
- 005
- 20160228092806.0
- 007
- ta
- 008
- 120816s2011 ne f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbamcr.2010.12.003 $2 doi
- 035 __
- $a (PubMed)21167217
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Otáhal, Pavel, $d 1976- $7 xx0173244 $u Institute of Molecular Genetics AS CR, Prague, Czech Republic
- 245 14
- $a The effects of membrane compartmentalization of csk on TCR signaling / $c P. Otáhal, S. Pata, P. Angelisová, V. Hořejší, T. Brdička
- 520 9_
- $a The TCR signal transduction is initiated by the activation of Src-family kinases (SFK) which phosphorylate Immunoreceptor tyrosine-based activation motifs (ITAM) present in the intracellular parts of the T-cell receptor (TCR) signaling subunits. Numerous data suggest that after stimulation TCR interacts with membrane rafts and thus it gains access to SFK and other important molecules involved in signal transduction. However, the precise mechanism of this process is unclear. One of the key questions is how SFK access TCR and what is the importance of non-raft and membrane raft-associated SFK for the initiation and maintenance of the TCR signaling. To answer this question we targeted a negative regulator of SFK, C-terminal Src kinase (Csk) to membrane rafts, recently described "heavy rafts" or non-raft membrane. Our data show that only Csk targeted into "classical" raft but not to "heavy raft" or non-raft membrane effectively inhibits TCR signaling, demonstrating the critical role of membrane raft-associated SFK in this process.
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a imunoblotting $7 D015151
- 650 _2
- $a membránové mikrodomény $7 D021962
- 650 _2
- $a fosforylace $7 D010766
- 650 _2
- $a tyrosinkinasy $x metabolismus $7 D011505
- 650 _2
- $a protoonkogenní proteiny $x metabolismus $7 D011518
- 650 _2
- $a receptory antigenů T-buněk $x metabolismus $7 D011948
- 650 _2
- $a signální transdukce $7 D015398
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pata, S. $u Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand. watchara@chiangmai.ac.th
- 700 1_
- $a Angelisová, Pavla $7 xx0072996 $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 700 1_
- $a Hořejší, Václav, $d 1949- $7 jn20000401057 $u Institute of Molecular Genetics, Czechoslovak Academy of Sciences, Praha
- 700 1_
- $a Brdička, Tomáš $7 xx0140497 $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
- 773 0_
- $w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1813, č. 2 (2011), s. 367-376
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21167217 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160228092816 $b ABA008
- 999 __
- $a ok $b bmc $g 948630 $s 783934
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 1813 $c 2 $d 367-376 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
- LZP __
- $b NLK122 $a Pubmed-20120816/11/01