Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion. This approach enabled us to observe odorant-induced neuronal activity within the different olfactory subsystems and to demonstrate the impact of environmental conditioning, such as temperature variations, on olfactory sensitivity, specifically in the Grueneberg ganglion. We further applied our rpS6-based assay to the human olfactory system and demonstrated its feasibility. Our findings show that analyzing rpS6 signal intensity is a robust and highly reproducible indicator of neuronal activity across various olfactory systems, while avoiding stress and some experimental limitations associated with in vivo exposure. The potential extension of this assay to other conditioning paradigms and olfactory systems, as well as its application to other animal species, including human olfactory diagnostics, is also discussed.
- MeSH
- čich fyziologie MeSH
- čichová sliznice metabolismus MeSH
- čichové buňky * metabolismus fyziologie MeSH
- fosforylace MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odoranty analýza MeSH
- ribozomální protein S6 * metabolismus MeSH
- vomeronazální orgán metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The RNA content is crucial for the formation of nuclear compartments, such as nuclear speckles and nucleoli. Phosphatidylinositol 4,5-bisphosphate (PIP2) is found in nuclear speckles, nucleoli, and nuclear lipid islets and is involved in RNA polymerase I/II transcription. Intriguingly, the nuclear localization of PIP2 was also shown to be RNA-dependent. We therefore investigated whether PIP2 and RNA cooperate in the establishment of nuclear architecture. In this study, we unveiled the RNA-dependent PIP2-associated (RDPA) nuclear proteome in human cells by mass spectrometry. We found that intrinsically disordered regions (IDRs) with polybasic PIP2-binding K/R motifs are prevalent features of RDPA proteins. Moreover, these IDRs of RDPA proteins exhibit enrichment for phosphorylation, acetylation, and ubiquitination sites. Our results show for the first time that the RDPA protein Bromodomain-containing protein 4 (BRD4) associates with PIP2 in the RNA-dependent manner via electrostatic interactions, and that altered PIP2 levels affect the number of nuclear foci of BRD4 protein. Thus, we propose that PIP2 spatiotemporally orchestrates nuclear processes through association with RNA and RDPA proteins and affects their ability to form foci presumably via phase separation. This suggests the pivotal role of PIP2 in the establishment of a functional nuclear architecture competent for gene expression.
- MeSH
- buněčné jádro * metabolismus genetika MeSH
- fosfatidylinositol-4,5-difosfát * metabolismus MeSH
- fosforylace MeSH
- jaderné proteiny * metabolismus genetika MeSH
- lidé MeSH
- proteiny buněčného cyklu metabolismus genetika MeSH
- proteiny obsahující bromodoménu MeSH
- RNA metabolismus genetika MeSH
- transkripční faktory * metabolismus genetika MeSH
- vazba proteinů MeSH
- vnitřně neuspořádané proteiny * metabolismus genetika chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
DNA double-strand breaks (DSBs) represent a lethal form of DNA damage that can trigger cell death or initiate oncogenesis. The activity of RNA polymerase II (RNAPII) at the break site is required for efficient DSB repair. However, the regulatory mechanisms governing the transcription cycle at DSBs are not well understood. Here, we show that Integrator complex subunit 6 (INTS6) associates with the heterotrimeric sensor of ssDNA (SOSS1) complex (comprising INTS3, INIP and hSSB1) to form the tetrameric SOSS1 complex. INTS6 binds to DNA:RNA hybrids and promotes Protein Phosphatase 2A (PP2A) recruitment to DSBs, facilitating the dephosphorylation of RNAPII. Furthermore, INTS6 prevents the accumulation of damage-associated RNA transcripts (DARTs) and the stabilization of DNA:RNA hybrids at DSB sites. INTS6 interacts with and promotes the recruitment of senataxin (SETX) to DSBs, facilitating the resolution of DNA:RNA hybrids/R-loops. Our results underscore the significance of the tetrameric SOSS1 complex in the autoregulation of DNA:RNA hybrids and efficient DNA repair.
- MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA-helikasy metabolismus genetika MeSH
- DNA * metabolismus chemie MeSH
- dvouřetězcové zlomy DNA * MeSH
- fosforylace MeSH
- homeostáza genetika MeSH
- lidé MeSH
- oprava DNA * MeSH
- proteinfosfatasa 2 metabolismus genetika MeSH
- R-smyčka MeSH
- RNA-helikasy metabolismus genetika MeSH
- RNA-polymerasa II * metabolismus MeSH
- RNA * metabolismus genetika chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Bruton tyrosine kinase (BTK) inhibitor therapy induces peripheral blood lymphocytosis in chronic lymphocytic leukemia (CLL), which lasts for several months. It remains unclear whether nongenetic adaptation mechanisms exist, allowing CLL cells' survival during BTK inhibitor-induced lymphocytosis and/or playing a role in therapy resistance. We show that in approximately 70% of CLL cases, ibrutinib treatment in vivo increases Akt activity above pretherapy levels within several weeks, leading to compensatory CLL cell survival and a more prominent lymphocytosis on therapy. Ibrutinib-induced Akt phosphorylation (pAktS473) is caused by the upregulation of Forkhead box protein O1 (FoxO1) transcription factor, which induces expression of Rictor, an assembly protein for the mTORC2 protein complex that directly phosphorylates Akt at serine 473 (S473). Knockout or inhibition of FoxO1 or Rictor led to a dramatic decrease in Akt phosphorylation and growth disadvantage for malignant B cells in the presence of ibrutinib (or PI3K inhibitor idelalisib) in vitro and in vivo. The FoxO1/Rictor/pAktS473 axis represents an early nongenetic adaptation to B cell receptor (BCR) inhibitor therapy not requiring PI3Kδ or BTK kinase activity. We further demonstrate that FoxO1 can be targeted therapeutically and its inhibition induces CLL cells' apoptosis alone or in combination with BTK inhibitors (ibrutinib, acalabrutinib, pirtobrutinib) and blocks their proliferation triggered by T cell factors (CD40L, IL-4, and IL-21).
- MeSH
- adenin * analogy a deriváty farmakologie MeSH
- chronická lymfatická leukemie * farmakoterapie metabolismus genetika patologie MeSH
- forkhead box protein O1 * metabolismus genetika MeSH
- fosforylace MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny metabolismus genetika MeSH
- piperidiny * farmakologie MeSH
- protein RICTOR * genetika metabolismus MeSH
- proteinkinasa BTK metabolismus genetika antagonisté a inhibitory MeSH
- protoonkogenní proteiny c-akt * metabolismus genetika MeSH
- pyrazoly * farmakologie MeSH
- pyrimidiny * farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The mechanistic target of rapamycin (mTOR) is a crucial regulator of cell metabolic activity. It forms part of several distinct protein complexes, particularly mTORC1 and mTORC2. The lack of specific inhibitors still hampers the attribution of mTOR functions to these complexes. JR-AB2-011 has been reported as a specific mTORC2 inhibitor preventing mTOR binding to RICTOR, a unique component of mTORC2. We aimed to describe the effects of JR-AB2-011 in leukemia/lymphoma cells, where the mTOR pathway is often aberrantly activated. METHODS: The impact of JR-AB2-011 on leukemia/lymphoma cell metabolism was analyzed using the Seahorse platform. AKT phosphorylation at Ser473 was used as a marker of mTORC2 activity. mTOR binding to RICTOR was assessed by co-immunoprecipitation. RICTOR-null cells were derived from the Karpas-299 cell line using CRISPR/Cas9 gene editing. RESULTS: In leukemia/lymphoma cell lines, JR-AB2-011 induced a rapid drop in the cell respiration rate, which was variably compensated by an increased glycolytic rate. In contrast, an increase in the respiration rate due to JR-AB2-011 treatment was observed in primary leukemia cells. Unexpectedly, JR-AB2-011 did not affect AKT Ser473 phosphorylation. In addition, mTOR did not dissociate from RICTOR in cells treated with JR-AB2-011 under the experimental conditions used in this study. The effect of JR-AB2-011 on cell respiration was retained in RICTOR-null cells. CONCLUSION: JR-AB2-011 affects leukemia/lymphoma cell metabolism via a mechanism independent of mTORC2.
- MeSH
- fosforylace účinky léků MeSH
- leukemie * farmakoterapie metabolismus MeSH
- lidé MeSH
- mechanistické cílové místo rapamycinového komplexu 2 * metabolismus MeSH
- mTOR inhibitory farmakologie MeSH
- nádorové buněčné linie MeSH
- protein RICTOR * metabolismus MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The amyloid cascade hypothesis postulates that extracellular deposits of amyloid β (Aβ) are the primary and initial cause leading to the full development of Alzheimer's disease (AD) with intracellular neurofibrillary tangles; however, the details of this mechanism have not been fully described until now. Our preliminary data, coming from our day-to-day neuropathology practice, show that the primary location of the hyperphosphorylated tau protein is in the vicinity of the cell membrane of dystrophic neurites. This observation inspired us to formulate a hypothesis that presumes an interaction between low-density lipoprotein receptor-related protein 1 (LRP1) and fibrillar aggregates of, particularly, Aβ42 anchored at the periphery of neuritic plaques, making internalization of the LRP1-Aβ42 complex infeasible and, thus, causing membrane dysfunction, leading to the tauopathy characterized by intracellular accumulation and hyperphosphorylation of the tau protein. Understanding AD as a membrane dysfunction tauopathy may draw attention to new treatment approaches not only targeting Aβ42 production but also, perhaps paradoxically, preventing the formation of LRP1-Aβ42.
- MeSH
- Alzheimerova nemoc * metabolismus patologie etiologie MeSH
- amyloidní beta-protein * metabolismus MeSH
- buněčná membrána metabolismus MeSH
- fosforylace MeSH
- lidé MeSH
- peptidové fragmenty metabolismus MeSH
- protein 1 související s LDL-receptory * metabolismus MeSH
- proteiny tau * metabolismus MeSH
- tauopatie * metabolismus patologie etiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.
- MeSH
- cyklooxygenasa 1 * MeSH
- DEAD box protein 58 MeSH
- DEAD-box RNA-helikasy metabolismus genetika MeSH
- játra * metabolismus patologie MeSH
- lidé MeSH
- membránové proteiny MeSH
- mitochondriální proteiny metabolismus genetika MeSH
- mitochondrie metabolismus MeSH
- mutace MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- oxidativní fosforylace * MeSH
- proteosyntéza MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- respirační komplex IV * metabolismus genetika MeSH
- RNA mitochondriální genetika metabolismus MeSH
- zánět * metabolismus genetika patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: This study investigates the neuroprotective effects of lipidized analogues of 2-SS-CART(61-102) derived from anorexigenic neuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) in light of the link between obesity, its comorbidities, and the development of Alzheimer's disease. METHODS: We introduce novel lipidized analogues derived from 2-SS-CART(61-102), a specific analogue of natural CART(61-102), with two disulfide bridges. Using hypothermic PC12 cells, we tested the effect of the most potent analogues on Tau phosphorylation. We further described the anorexigenic and neuroprotective potential of subcutaneously (SC) injected lipidized CARTp analogue in a mouse model with prediabetes and obesity induced by neonatal monosodium glutamate (MSG) administration. RESULTS: Compared to the non-lipidized 2-SS-CART(61-102), all lipidized analogues exhibited a potent binding affinity to PC12 cells and enhanced in vitro stability in rat plasma. Two most potent lipidized analogues attenuated hypothermia-induced Tau hyperphosphorylation at multiple epitopes. Subsequently, chronic SC treatment with palm-2-SS-CART(61-102) significantly decreased body weight and food intake, improved metabolic parameters, decreased level of pTau and increased neurogenesis in hippocampi of obese MSG mice. CONCLUSION: Our unique CARTp analogue palm-2-SS-CART(61-102) shows promise as a potent anti-obesity and neuroprotective agent.
- MeSH
- anorektika farmakologie MeSH
- buňky PC12 MeSH
- fosforylace účinky léků MeSH
- glutamát sodný * MeSH
- krysa rodu rattus MeSH
- lipidy chemie krev MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neuroprotektivní látky * farmakologie MeSH
- obezita * metabolismus farmakoterapie MeSH
- proteiny nervové tkáně * metabolismus MeSH
- proteiny tau metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A wide range of articles describe the role of different probiotics in the prevention or treatment of various diseases. However, currently, the focus is shifting from whole microorganisms to their easier-to-define components that can confer similar or stronger benefits on the host. Here, we aimed to describe polysaccharide B.PAT, which is a surface antigen isolated from Bifidobacterium animalis ssp. animalis CCDM 218 and to understand the relationship between its structure and function. For this reason, we determined its glycerol phosphate-substituted structure, which consists of glucose, galactose, and rhamnose residues creating the following repeating unit: To fully understand the role of glycerol phosphate substitution on the B.PAT function, we prepared the dephosphorylated counterpart (B.MAT) and tested their immunomodulatory properties. The results showed that the loss of glycerol phosphate increased the production of IL-6, IL-10, IL-12, and TNF-α in bone marrow dendritic cells alone and after treatment with Lacticaseibacillus rhamnosus GG. Further studies indicated that dephosphorylation can enhance B.PAT properties to suppress IL-1β-induced inflammatory response in Caco-2 and HT-29 cells. Thus, we suggest that further investigation of B.PAT and B.MAT may reveal distinct functionalities that can be exploited in the treatment of various diseases and may constitute an alternative to probiotics.
- MeSH
- bakteriální polysacharidy farmakologie chemie izolace a purifikace MeSH
- Bifidobacterium animalis * chemie MeSH
- buňky HT-29 MeSH
- Caco-2 buňky MeSH
- cytokiny metabolismus MeSH
- dendritické buňky účinky léků imunologie metabolismus MeSH
- fosforylace účinky léků MeSH
- imunologické faktory farmakologie chemie izolace a purifikace MeSH
- Lacticaseibacillus rhamnosus chemie MeSH
- lidé MeSH
- myši MeSH
- probiotika farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is driven by aberrant activation of the B-cell receptor (BCR) and the TLR/MyD88 signaling pathways. The heat-shock protein HSP110 is a candidate for their regulation as it stabilizes MyD88. However, its role in overall BCR signaling remains unknown. Here, we used first-in-class HSP110 inhibitors to address this question. HSP110 inhibitors decreased the survival of several ABC-DLBCL cell lines in vitro and in vivo, and reduced the phosphorylation of BCR signaling kinases, including BTK and SYK. We identified an interaction between HSP110 and SYK and demonstrated that HSP110 promotes SYK phosphorylation. Finally, the combination of the HSP110 inhibitor with the PI3K inhibitor copanlisib decreases SYK/BTK and AKT phosphorylation synergistically, leading to suppression of tumor growth in cell line xenografts and strong reduction in patient-derived xenografts. In conclusion, by regulating the BCR/TLR signaling pathway, HSP110 inhibitors are potential drug candidates for ABC-DLBCL patients.
- MeSH
- chinazoliny MeSH
- difúzní velkobuněčný B-lymfom * farmakoterapie metabolismus patologie MeSH
- fosforylace účinky léků MeSH
- kinasa Syk * antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- myši SCID MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové buňky kultivované MeSH
- proteiny tepelného šoku HSP110 * metabolismus MeSH
- pyrimidiny farmakologie MeSH
- receptory antigenů B-buněk * metabolismus MeSH
- signální transdukce * účinky léků MeSH
- xenogenní modely - testy antitumorózní aktivity * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH