• Something wrong with this record ?

Automatic annotation of actigraphy data for sleep disorders diagnosis purposes

A. Domingues, O. Adamec, T. Paiva, J. M. Sanches

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

The diagnosis of Sleep disorders, highly prevalent in the western countries, typically involves sophisticated procedures and equipments that are intrusive to the patient. Wrist actigraphy, on the contrary, is a non-invasive and low cost solution to gather data which can provide valuable information in the diagnosis of these disorders. The acquired data may be used to infer the Sleep/Wakefulness (SW) state of the patient during the circadian cycle and detect abnormal behavioral patterns associated with these disorders. In this paper a classifier based on Autoregressive (AR) model coefficients, among other features, is proposed to estimate the SW state. The real data, acquired from 23 healthy subjects during fourteen days each, was segmented by expert medical personal with the help of complementary information such as light intensity and Sleep e-Diary information. Monte Carlo tests with a Leave-One-Out Cross Validation (LOOCV) strategy were used to assess the performance of the classifier which achieves an accuracy of 96%.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12026625
003      
CZ-PrNML
005      
20160301085236.0
007      
ta
008      
120816s2010 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1109/iembs.2010.5626207 $2 doi
035    __
$a (PubMed)21096031
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Domingues, Alexandre $u Institute for Systems and Robotics / Instituto Superior Técnico, Czech Republic. adomingues@gmail.com
245    10
$a Automatic annotation of actigraphy data for sleep disorders diagnosis purposes / $c A. Domingues, O. Adamec, T. Paiva, J. M. Sanches
520    9_
$a The diagnosis of Sleep disorders, highly prevalent in the western countries, typically involves sophisticated procedures and equipments that are intrusive to the patient. Wrist actigraphy, on the contrary, is a non-invasive and low cost solution to gather data which can provide valuable information in the diagnosis of these disorders. The acquired data may be used to infer the Sleep/Wakefulness (SW) state of the patient during the circadian cycle and detect abnormal behavioral patterns associated with these disorders. In this paper a classifier based on Autoregressive (AR) model coefficients, among other features, is proposed to estimate the SW state. The real data, acquired from 23 healthy subjects during fourteen days each, was segmented by expert medical personal with the help of complementary information such as light intensity and Sleep e-Diary information. Monte Carlo tests with a Leave-One-Out Cross Validation (LOOCV) strategy were used to assess the performance of the classifier which achieves an accuracy of 96%.
650    _2
$a aktigrafie $x metody $7 D056044
650    _2
$a automatizované zpracování dat $x metody $7 D001330
650    _2
$a automatizace $7 D001331
650    _2
$a Bayesova věta $7 D001499
650    _2
$a lidé $7 D006801
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a spánek $x fyziologie $7 D012890
650    _2
$a poruchy spánku a bdění $x diagnóza $x patofyziologie $7 D012893
650    _2
$a bdění $x fyziologie $7 D014851
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Adamec, Ondřej $7 _AN038891
700    1_
$a Paiva, Teresa $u ISTEL, Instituto do Sono, Cronobiologia e Telemedicina, Lisbon, Portugal. paiva.fml.hsm@mail.telepac.pt
700    1_
$a Sanches, J. Miguel $u Institute for Systems and Robotics, Switzerland. jmrs@ist.ul.pt
773    0_
$w MED00180111 $t Conference proceedings ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference $x 1557-170X $g Roč. 2010(2010), s. 5081-5084
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21096031 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120816 $b ABA008
991    __
$a 20160301085249 $b ABA008
999    __
$a ok $b bmc $g 948667 $s 783971
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2010 $b 2010 $d 5081-5084 $i 1557-170X $m Conference proceedings ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society $n Conf Proc IEEE Eng Med Biol Soc $x MED00180111
LZP    __
$b NLK122 $a Pubmed-20120816/11/01

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...