• Je něco špatně v tomto záznamu ?

Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry

P. Trávnícek, B. Kubátová, V. Curn, J. Rauchová, E. Krajníková, J. Jersáková, J. Suda

. 2011 ; 107 (1) : 77-87.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12026671
E-zdroje Online Plný text

NLK PubMed Central od 1995 do Před 1 rokem
Europe PubMed Central od 1995 do Před 1 rokem
Open Access Digital Library od 1993-01-01
Medline Complete (EBSCOhost) od 1996-01-01 do Před 1 rokem

BACKGROUND AND AIMS: One of the prerequisites for polyploid research in natural systems is knowledge of the geographical distribution of cytotypes. Here inter- and intrapopulational ploidy diversity was examined in the Gymnadenia conopsea aggregate in central Europe and potential explanations and evolutionary consequences of the observed spatial patterns investigated. METHODS: DAPI flow cytometry supplemented by confirmatory chromosome counts was used to determine ploidy in 3581 samples of the G. conopsea aggregate from 43 populations. The fine-scale spatial pattern of cytotype distribution (intra- and interploidy associations) was analysed with univariate and bivariate K-functions. KEY RESULTS: Gymnadenia tissues undergo a progressively partial endoreplication, which accounts for about 60 % and 75 % of the total genome in G. conopsea and G. densiflora, respectively. Flow cytometric profiles are therefore species-specific and can be used as a marker for rapid and reliable species recognition. Two majority (4x, 8x) and three minority (6x, 10x, 12x) cytotypes were found, often in mixed-ploidy populations (harbouring up to all five different ploidy levels). The scarcity of the minority cytotypes (about 2·7 %) suggests the existence of strong pre- or postzygotic mating barriers. Spatial structure was observed in plots of populations with the highest cytotype variation, including clumping of individuals of the same ploidy and negative association between tetra- and octoploids. CONCLUSIONS: The remarkable ploidy coexistence in the G. conopsea aggregate has reshaped our perception of intrapopulational ploidy diversity under natural conditions. This system offers unique opportunities for studying processes governing the formation and establishment of polyploids and assessing the evolutionary significance of the various pre- and postzygotic mating barriers that maintain this ploidy mixture.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12026671
003      
CZ-PrNML
005      
20160307112108.0
007      
ta
008      
120816s2011 enk f 000 0#eng||
009      
AR
024    7_
$a 10.1093/aob/mcq217 $2 doi
035    __
$a (PubMed)21059612
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Trávnícek, Pavel $u Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University in Prague, CZ-128 01 Prague, Czech Republic
245    10
$a Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry / $c P. Trávnícek, B. Kubátová, V. Curn, J. Rauchová, E. Krajníková, J. Jersáková, J. Suda
520    9_
$a BACKGROUND AND AIMS: One of the prerequisites for polyploid research in natural systems is knowledge of the geographical distribution of cytotypes. Here inter- and intrapopulational ploidy diversity was examined in the Gymnadenia conopsea aggregate in central Europe and potential explanations and evolutionary consequences of the observed spatial patterns investigated. METHODS: DAPI flow cytometry supplemented by confirmatory chromosome counts was used to determine ploidy in 3581 samples of the G. conopsea aggregate from 43 populations. The fine-scale spatial pattern of cytotype distribution (intra- and interploidy associations) was analysed with univariate and bivariate K-functions. KEY RESULTS: Gymnadenia tissues undergo a progressively partial endoreplication, which accounts for about 60 % and 75 % of the total genome in G. conopsea and G. densiflora, respectively. Flow cytometric profiles are therefore species-specific and can be used as a marker for rapid and reliable species recognition. Two majority (4x, 8x) and three minority (6x, 10x, 12x) cytotypes were found, often in mixed-ploidy populations (harbouring up to all five different ploidy levels). The scarcity of the minority cytotypes (about 2·7 %) suggests the existence of strong pre- or postzygotic mating barriers. Spatial structure was observed in plots of populations with the highest cytotype variation, including clumping of individuals of the same ploidy and negative association between tetra- and octoploids. CONCLUSIONS: The remarkable ploidy coexistence in the G. conopsea aggregate has reshaped our perception of intrapopulational ploidy diversity under natural conditions. This system offers unique opportunities for studying processes governing the formation and establishment of polyploids and assessing the evolutionary significance of the various pre- and postzygotic mating barriers that maintain this ploidy mixture.
650    _2
$a chromozomy rostlin $7 D032461
650    _2
$a DNA rostlinná $x genetika $7 D018744
650    _2
$a průtoková cytometrie $7 D005434
650    _2
$a genetická variace $7 D014644
650    _2
$a genom rostlinný $7 D018745
650    _2
$a Orchidaceae $x klasifikace $x genetika $7 D029595
650    _2
$a polyploidie $7 D011123
650    _2
$a tetraploidie $7 D057891
651    _2
$a Česká republika $7 D018153
651    _2
$a Slovenská republika $7 D018154
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kubátová, Barbora $u Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
700    1_
$a Čurn, Vladislav, $d 1965- $7 xx0064513 $u Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
700    1_
$a Rauchová, Jana $u Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University in Prague, CZ-128 01 Prague, Czech Republic
700    1_
$a Krajníková, Eva $u Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
700    1_
$a Jersáková, Jana, $d 1975- $7 mzk2005304335 $u Faculty of Science, University of South Bohemia and Institute of System Biology and Ecology, CZ-370 05 České Budějovice, Czech Republic
700    1_
$a Suda, Jan, $d 1974-2017 $7 xx0004205 $u Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic; Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic
773    0_
$w MED00000419 $t Annals of botany $x 1095-8290 $g Roč. 107, č. 1 (2011), s. 77-87
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21059612 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120816 $b ABA008
991    __
$a 20160307112125 $b ABA008
999    __
$a ok $b bmc $g 948713 $s 784017
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 107 $c 1 $d 77-87 $i 1095-8290 $m Annals of botany $n Ann. bot. (Print) $x MED00000419
LZP    __
$b NLK122 $a Pubmed-20120816/11/01

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...