-
Je něco špatně v tomto záznamu ?
Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry
P. Trávnícek, B. Kubátová, V. Curn, J. Rauchová, E. Krajníková, J. Jersáková, J. Suda
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
PubMed Central
od 1995 do Před 1 rokem
Europe PubMed Central
od 1995 do Před 1 rokem
Open Access Digital Library
od 1993-01-01
Medline Complete (EBSCOhost)
od 1996-01-01 do Před 1 rokem
PubMed
21059612
DOI
10.1093/aob/mcq217
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin MeSH
- DNA rostlinná genetika MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- Orchidaceae klasifikace genetika MeSH
- polyploidie MeSH
- průtoková cytometrie MeSH
- tetraploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Slovenská republika MeSH
BACKGROUND AND AIMS: One of the prerequisites for polyploid research in natural systems is knowledge of the geographical distribution of cytotypes. Here inter- and intrapopulational ploidy diversity was examined in the Gymnadenia conopsea aggregate in central Europe and potential explanations and evolutionary consequences of the observed spatial patterns investigated. METHODS: DAPI flow cytometry supplemented by confirmatory chromosome counts was used to determine ploidy in 3581 samples of the G. conopsea aggregate from 43 populations. The fine-scale spatial pattern of cytotype distribution (intra- and interploidy associations) was analysed with univariate and bivariate K-functions. KEY RESULTS: Gymnadenia tissues undergo a progressively partial endoreplication, which accounts for about 60 % and 75 % of the total genome in G. conopsea and G. densiflora, respectively. Flow cytometric profiles are therefore species-specific and can be used as a marker for rapid and reliable species recognition. Two majority (4x, 8x) and three minority (6x, 10x, 12x) cytotypes were found, often in mixed-ploidy populations (harbouring up to all five different ploidy levels). The scarcity of the minority cytotypes (about 2·7 %) suggests the existence of strong pre- or postzygotic mating barriers. Spatial structure was observed in plots of populations with the highest cytotype variation, including clumping of individuals of the same ploidy and negative association between tetra- and octoploids. CONCLUSIONS: The remarkable ploidy coexistence in the G. conopsea aggregate has reshaped our perception of intrapopulational ploidy diversity under natural conditions. This system offers unique opportunities for studying processes governing the formation and establishment of polyploids and assessing the evolutionary significance of the various pre- and postzygotic mating barriers that maintain this ploidy mixture.
Department of Botany Faculty of Science Charles University Prague CZ 128 01 Prague Czech Republic
Institute of Botany Academy of Sciences of the Czech Republic CZ 252 43 Průhonice Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026671
- 003
- CZ-PrNML
- 005
- 20160307112108.0
- 007
- ta
- 008
- 120816s2011 enk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1093/aob/mcq217 $2 doi
- 035 __
- $a (PubMed)21059612
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Trávnícek, Pavel $u Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University in Prague, CZ-128 01 Prague, Czech Republic
- 245 10
- $a Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry / $c P. Trávnícek, B. Kubátová, V. Curn, J. Rauchová, E. Krajníková, J. Jersáková, J. Suda
- 520 9_
- $a BACKGROUND AND AIMS: One of the prerequisites for polyploid research in natural systems is knowledge of the geographical distribution of cytotypes. Here inter- and intrapopulational ploidy diversity was examined in the Gymnadenia conopsea aggregate in central Europe and potential explanations and evolutionary consequences of the observed spatial patterns investigated. METHODS: DAPI flow cytometry supplemented by confirmatory chromosome counts was used to determine ploidy in 3581 samples of the G. conopsea aggregate from 43 populations. The fine-scale spatial pattern of cytotype distribution (intra- and interploidy associations) was analysed with univariate and bivariate K-functions. KEY RESULTS: Gymnadenia tissues undergo a progressively partial endoreplication, which accounts for about 60 % and 75 % of the total genome in G. conopsea and G. densiflora, respectively. Flow cytometric profiles are therefore species-specific and can be used as a marker for rapid and reliable species recognition. Two majority (4x, 8x) and three minority (6x, 10x, 12x) cytotypes were found, often in mixed-ploidy populations (harbouring up to all five different ploidy levels). The scarcity of the minority cytotypes (about 2·7 %) suggests the existence of strong pre- or postzygotic mating barriers. Spatial structure was observed in plots of populations with the highest cytotype variation, including clumping of individuals of the same ploidy and negative association between tetra- and octoploids. CONCLUSIONS: The remarkable ploidy coexistence in the G. conopsea aggregate has reshaped our perception of intrapopulational ploidy diversity under natural conditions. This system offers unique opportunities for studying processes governing the formation and establishment of polyploids and assessing the evolutionary significance of the various pre- and postzygotic mating barriers that maintain this ploidy mixture.
- 650 _2
- $a chromozomy rostlin $7 D032461
- 650 _2
- $a DNA rostlinná $x genetika $7 D018744
- 650 _2
- $a průtoková cytometrie $7 D005434
- 650 _2
- $a genetická variace $7 D014644
- 650 _2
- $a genom rostlinný $7 D018745
- 650 _2
- $a Orchidaceae $x klasifikace $x genetika $7 D029595
- 650 _2
- $a polyploidie $7 D011123
- 650 _2
- $a tetraploidie $7 D057891
- 651 _2
- $a Česká republika $7 D018153
- 651 _2
- $a Slovenská republika $7 D018154
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kubátová, Barbora $u Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
- 700 1_
- $a Čurn, Vladislav, $d 1965- $7 xx0064513 $u Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
- 700 1_
- $a Rauchová, Jana $u Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University in Prague, CZ-128 01 Prague, Czech Republic
- 700 1_
- $a Krajníková, Eva $u Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
- 700 1_
- $a Jersáková, Jana, $d 1975- $7 mzk2005304335 $u Faculty of Science, University of South Bohemia and Institute of System Biology and Ecology, CZ-370 05 České Budějovice, Czech Republic
- 700 1_
- $a Suda, Jan, $d 1974-2017 $7 xx0004205 $u Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic; Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic
- 773 0_
- $w MED00000419 $t Annals of botany $x 1095-8290 $g Roč. 107, č. 1 (2011), s. 77-87
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21059612 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160307112125 $b ABA008
- 999 __
- $a ok $b bmc $g 948713 $s 784017
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 107 $c 1 $d 77-87 $i 1095-8290 $m Annals of botany $n Ann. bot. (Print) $x MED00000419
- LZP __
- $b NLK122 $a Pubmed-20120816/11/01