-
Je něco špatně v tomto záznamu ?
Systematically fragmented genes in a multipartite mitochondrial genome
C. Vlcek, W. Marande, S. Teijeiro, J. Lukes, G. Burger
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
20935050
DOI
10.1093/nar/gkq883
Knihovny.cz E-zdroje
- MeSH
- chromozomy chemie MeSH
- Euglenozoa genetika MeSH
- genetická transkripce MeSH
- genom mitochondriální MeSH
- mitochondriální DNA chemie MeSH
- mitochondriální geny MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- sekvenční analýza DNA MeSH
- trans-splicing MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60-350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3'-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026741
- 003
- CZ-PrNML
- 005
- 20160417110941.0
- 007
- ta
- 008
- 120816s2011 enk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkq883 $2 doi
- 035 __
- $a (PubMed)20935050
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Vlček, Čestmír $7 xx0122524 $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Department of Genomics and Bioinformatics, 142 20 Prague, Czech Republic
- 245 10
- $a Systematically fragmented genes in a multipartite mitochondrial genome / $c C. Vlcek, W. Marande, S. Teijeiro, J. Lukes, G. Burger
- 520 9_
- $a Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60-350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3'-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema.
- 650 _2
- $a chromozomy $x chemie $7 D002875
- 650 _2
- $a mitochondriální DNA $x chemie $7 D004272
- 650 _2
- $a Euglenozoa $x genetika $7 D056898
- 650 _2
- $a mitochondriální geny $7 D050259
- 650 _2
- $a genom mitochondriální $7 D054629
- 650 _2
- $a mitochondrie $x genetika $x metabolismus $7 D008928
- 650 _2
- $a mitochondriální proteiny $x genetika $x metabolismus $7 D024101
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 650 _2
- $a trans-splicing $7 D020040
- 650 _2
- $a genetická transkripce $7 D014158
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Marande, William $u Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec, H3T 1J4 Canada
- 700 1_
- $a Teijeiro, Shona $u Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec, H3T 1J4 Canada
- 700 1_
- $a Lukeš, Julius, $d 1963- $7 xx0048510 $u Biology Centre, Institute of Parasitology, Czech Academy of Science and Faculty of Science, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- 700 1_
- $a Burger, Gertraud $u Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec, H3T 1J4 Canada; Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec, Canada
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 39, č. 3 (2011), s. 979-988
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20935050 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160417111027 $b ABA008
- 999 __
- $a ok $b bmc $g 948783 $s 784087
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 39 $c 3 $d 979-988 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $b NLK122 $a Pubmed-20120816/11/01