-
Je něco špatně v tomto záznamu ?
Early detection of influenza-like illness through medication sales
Maja Sočan, Vanja Erčulj, Jaro Lajovic
Jazyk angličtina Země Česko
Digitální knihovna NLK
Zdroj
NLK
Free Medical Journals
od 2004
ProQuest Central
od 2009-03-01 do Před 6 měsíci
Medline Complete (EBSCOhost)
od 2006-03-01 do Před 6 měsíci
Nursing & Allied Health Database (ProQuest)
od 2009-03-01 do Před 6 měsíci
Health & Medicine (ProQuest)
od 2009-03-01 do Před 6 měsíci
Public Health Database (ProQuest)
od 2009-03-01 do Před 6 měsíci
- MeSH
- antibakteriální látky aplikace a dávkování MeSH
- chřipka lidská epidemiologie farmakoterapie MeSH
- epidemie MeSH
- incidence MeSH
- léky bez předpisu aplikace a dávkování MeSH
- lidé MeSH
- roční období MeSH
- sentinelová surveillance MeSH
- spotřeba léčiv ekonomika MeSH
- Check Tag
- lidé MeSH
Monitoring sales of medications is a potential candidate for an early signal of a seasonal influenza epidemic. To test this theory, the data from a traditional, consultation-oriented influenza surveillance system were compared to medication sales and a predictive model was developed. Weekly influenza-like incidence rates from the National Influenza Sentinel Surveillance System were compared to sales of seven groups of medications (nasal decongestants, medicines for sore throat (MST), antitussives, mucolytics, analgo-antipyretics, non-steroidal anti-inflamatory drugs (NSAIDs), betalactam antibiotics, and macrolide antibiotics) to determine the correlation of medication sales with the sentinel surveillance system – and therefore their predictive power. Poisson regression and regression tree approaches were used in the statistical analyses. The fact that NSAIDs do not exhibit any seasonality and that prescription of antibiotics requires a visit to the doctor's office makes the two medication groups inappropriate for predictive purposes. The influenza-like illness (ILI) curve is the best matched by the mucolytics and antitussives sales curves. Distinct seasonality is also observed with MST and decongestants. The model including these four medication groups performed best in prediction of ILI incidence rate using the Poisson regression model. Sales of antitussives proved to be the best single predictive variable for regression tree model. Sales of medication groups included in the model were demonstrated to have a predictive potential for early detection of influenza season. The quantitative information on medication sales proves to be a useful supplementary system, complementing the traditional consultation-oriented surveillance system.
Citace poskytuje Crossref.org
Obsahuje 1 tabulku
Bibliografie atd.Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12031455
- 003
- CZ-PrNML
- 005
- 20130207122450.0
- 007
- ta
- 008
- 121004s2012 xr d f 000 0eng||
- 009
- AR
- 024 7_
- $a 10.21101/cejph.a3735 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Sočan, Maja $u Centre for Communicable Diseases, National Institute of Public Health, Ljubljana, Slovenia
- 245 10
- $a Early detection of influenza-like illness through medication sales / $c Maja Sočan, Vanja Erčulj, Jaro Lajovic
- 500 __
- $a Obsahuje 1 tabulku
- 504 __
- $a Literatura $b 29
- 520 9_
- $a Monitoring sales of medications is a potential candidate for an early signal of a seasonal influenza epidemic. To test this theory, the data from a traditional, consultation-oriented influenza surveillance system were compared to medication sales and a predictive model was developed. Weekly influenza-like incidence rates from the National Influenza Sentinel Surveillance System were compared to sales of seven groups of medications (nasal decongestants, medicines for sore throat (MST), antitussives, mucolytics, analgo-antipyretics, non-steroidal anti-inflamatory drugs (NSAIDs), betalactam antibiotics, and macrolide antibiotics) to determine the correlation of medication sales with the sentinel surveillance system – and therefore their predictive power. Poisson regression and regression tree approaches were used in the statistical analyses. The fact that NSAIDs do not exhibit any seasonality and that prescription of antibiotics requires a visit to the doctor's office makes the two medication groups inappropriate for predictive purposes. The influenza-like illness (ILI) curve is the best matched by the mucolytics and antitussives sales curves. Distinct seasonality is also observed with MST and decongestants. The model including these four medication groups performed best in prediction of ILI incidence rate using the Poisson regression model. Sales of antitussives proved to be the best single predictive variable for regression tree model. Sales of medication groups included in the model were demonstrated to have a predictive potential for early detection of influenza season. The quantitative information on medication sales proves to be a useful supplementary system, complementing the traditional consultation-oriented surveillance system.
- 650 02
- $a antibakteriální látky $x aplikace a dávkování $7 D000900
- 650 02
- $a spotřeba léčiv $x ekonomika $7 D004363
- 650 02
- $a epidemie $7 D058872
- 650 02
- $a lidé $7 D006801
- 650 02
- $a incidence $7 D015994
- 650 02
- $a chřipka lidská $x epidemiologie $x farmakoterapie $7 D007251
- 650 02
- $a léky bez předpisu $x aplikace a dávkování $7 D004366
- 650 02
- $a roční období $7 D012621
- 650 02
- $a sentinelová surveillance $7 D018571
- 700 1_
- $a Erčulj, Vanja $u Rho Sigma Research & Statistics, Ljubljana, Slovenia
- 700 1_
- $a Lajovic, Jaro $u Rho Sigma Research & Statistics, Ljubljana, Slovenia
- 773 0_
- $t Central European journal of public health $x 1210-7778 $g Roč. 20, č. 2 (2012), s. 156-162 $w MED00001083
- 910 __
- $a ABA008 $b B 1829 $c 562 $y 3
- 990 __
- $a 20121004070811 $b ABA008
- 991 __
- $a 20130207122626 $b ABA008
- 999 __
- $a ok $b bmc $g 953841 $s 788899
- BAS __
- $a 3
- BMC __
- $a 2012 $b 20 $c 2 $d 156-162 $i 1210-7778 $m Central European Journal of Public Health $n Cent. Eur. J. Public Health $x MED00001083
- LZP __
- $a 2012-39/vtme