-
Je něco špatně v tomto záznamu ?
Why has nature invented three stop codons of DNA and only one start codon?
M. Křížek, P. Křížek
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- DNA genetika MeSH
- Drosophila genetika MeSH
- druhová specificita MeSH
- genetický kód genetika MeSH
- genom hmyzu genetika MeSH
- hemoglobiny genetika MeSH
- hmyzí geny genetika MeSH
- kodon iniciační MeSH
- lidé MeSH
- posunová mutace MeSH
- RNA genetika MeSH
- terminační kodon MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We examine the standard genetic code with three stop codons. Assuming that the synchronization period of length 3 in DNA or RNA is violated during the transcription or translation processes, the probability of reading a frameshifted stop codon is higher than if the code would have only one stop codon. Consequently, the synthesis of RNA or proteins will soon terminate. In this way, cells do not produce undesirable proteins and essentially save energy. This hypothesis is tested on the AT-rich Drosophila genome, where the detection of frameshifted stop codons is even higher than the theoretical value. Using the binomial theorem, we establish the probability of reading a frameshifted stop codon within n steps. Since the genetic code is largely redundant, there is still space for some hidden secondary functions of this code. In particular, because stop codons do not contain cytosine, random C → U and C → T mutations in the third position of codons increase the number of hidden frameshifted stops and simultaneously the same amino acids are coded. This evolutionary advantage is demonstrated on the genomes of several simple species, e.g. Escherichia coli.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12034600
- 003
- CZ-PrNML
- 005
- 20160905144631.0
- 007
- ta
- 008
- 121023s2012 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jtbi.2012.03.026 $2 doi
- 035 __
- $a (PubMed)22483666
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Křížek, Michal $7 _AN073366 $u Institute of Mathematics, Academy of Sciences, Žitná 25, CZ-115 67 Prague 1, Czech Republic. krizek@cesnet.cz
- 245 10
- $a Why has nature invented three stop codons of DNA and only one start codon? / $c M. Křížek, P. Křížek
- 520 9_
- $a We examine the standard genetic code with three stop codons. Assuming that the synchronization period of length 3 in DNA or RNA is violated during the transcription or translation processes, the probability of reading a frameshifted stop codon is higher than if the code would have only one stop codon. Consequently, the synthesis of RNA or proteins will soon terminate. In this way, cells do not produce undesirable proteins and essentially save energy. This hypothesis is tested on the AT-rich Drosophila genome, where the detection of frameshifted stop codons is even higher than the theoretical value. Using the binomial theorem, we establish the probability of reading a frameshifted stop codon within n steps. Since the genetic code is largely redundant, there is still space for some hidden secondary functions of this code. In particular, because stop codons do not contain cytosine, random C → U and C → T mutations in the third position of codons increase the number of hidden frameshifted stops and simultaneously the same amino acids are coded. This evolutionary advantage is demonstrated on the genomes of several simple species, e.g. Escherichia coli.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a kodon iniciační $7 D018387
- 650 _2
- $a terminační kodon $7 D018388
- 650 _2
- $a DNA $x genetika $7 D004247
- 650 _2
- $a Drosophila $x genetika $7 D004330
- 650 _2
- $a posunová mutace $7 D016368
- 650 _2
- $a hmyzí geny $x genetika $7 D017344
- 650 _2
- $a genetický kód $x genetika $7 D005815
- 650 _2
- $a genom hmyzu $x genetika $7 D049750
- 650 _2
- $a hemoglobiny $x genetika $7 D006454
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a RNA $x genetika $7 D012313
- 650 _2
- $a druhová specificita $7 D013045
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Křížek, Pavel $7 _AN073367 $u Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Albertov 4, CZ–128 00 Prague 2, Czech Republic
- 773 0_
- $w MED00003018 $t Journal of theoretical biology $x 1095-8541 $g Roč. 304(2012), s. 183-187
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22483666 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20121023 $b ABA008
- 991 __
- $a 20160905144941 $b ABA008
- 999 __
- $a ok $b bmc $g 956610 $s 792097
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 304 $d 183-187 $i 1095-8541 $m Journal of theoretical biology $n J Theor Biol $x MED00003018
- LZP __
- $b NLK122 $a Pubmed-20121023