Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The stochastic properties of input spike trains control neuronal arithmetic

Z. Bures,

. 2012 ; 106 (2) : 111-22.

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12034620
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 1996-08-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

In the nervous system, the representation of signals is based predominantly on the rate and timing of neuronal discharges. In most everyday tasks, the brain has to carry out a variety of mathematical operations on the discharge patterns. Recent findings show that even single neurons are capable of performing basic arithmetic on the sequences of spikes. However, the interaction of the two spike trains, and thus the resulting arithmetic operation may be influenced by the stochastic properties of the interacting spike trains. If we represent the individual discharges as events of a random point process, then an arithmetical operation is given by the interaction of two point processes. Employing a probabilistic model based on detection of coincidence of random events and complementary computer simulations, we show that the point process statistics control the arithmetical operation being performed and, particularly, that it is possible to switch from subtraction to division solely by changing the distribution of the inter-event intervals of the processes. Consequences of the model for evaluation of binaural information in the auditory brainstem are demonstrated. The results accentuate the importance of the stochastic properties of neuronal discharge patterns for information processing in the brain; further studies related to neuronal arithmetic should therefore consider the statistics of the interacting spike trains.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12034620
003      
CZ-PrNML
005      
20121206114859.0
007      
ta
008      
121023s2012 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00422-012-0483-9 $2 doi
035    __
$a (PubMed)22460694
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Bures, Zbynek $u College of Polytechnics, Tolsteho 16, 58601, Jihlava, Czech Republic. buresz@vspj.cz
245    14
$a The stochastic properties of input spike trains control neuronal arithmetic / $c Z. Bures,
520    9_
$a In the nervous system, the representation of signals is based predominantly on the rate and timing of neuronal discharges. In most everyday tasks, the brain has to carry out a variety of mathematical operations on the discharge patterns. Recent findings show that even single neurons are capable of performing basic arithmetic on the sequences of spikes. However, the interaction of the two spike trains, and thus the resulting arithmetic operation may be influenced by the stochastic properties of the interacting spike trains. If we represent the individual discharges as events of a random point process, then an arithmetical operation is given by the interaction of two point processes. Employing a probabilistic model based on detection of coincidence of random events and complementary computer simulations, we show that the point process statistics control the arithmetical operation being performed and, particularly, that it is possible to switch from subtraction to division solely by changing the distribution of the inter-event intervals of the processes. Consequences of the model for evaluation of binaural information in the auditory brainstem are demonstrated. The results accentuate the importance of the stochastic properties of neuronal discharge patterns for information processing in the brain; further studies related to neuronal arithmetic should therefore consider the statistics of the interacting spike trains.
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a zvířata $7 D000818
650    _2
$a počítačová simulace $7 D003198
650    _2
$a lidé $7 D006801
650    _2
$a modely neurologické $7 D008959
650    _2
$a nervová síť $x fyziologie $7 D009415
650    _2
$a nervový útlum $x fyziologie $7 D009433
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a teorie pravděpodobnosti $7 D011338
650    _2
$a stochastické procesy $7 D013269
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
773    0_
$w MED00000732 $t Biological cybernetics $x 1432-0770 $g Roč. 106, č. 2 (2012), s. 111-22
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22460694 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a
990    __
$a 20121023 $b ABA008
991    __
$a 20121206114933 $b ABA008
999    __
$a ok $b bmc $g 956630 $s 792117
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 106 $c 2 $d 111-22 $i 1432-0770 $m Biological cybernetics $n Biol Cybern $x MED00000732
LZP    __
$a Pubmed-20121023

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...