• Je něco špatně v tomto záznamu ?

Performance comparison of extracellular spike sorting algorithms for single-channel recordings

J. Wild, Z. Prekopcsak, T. Sieger, D. Novak, R. Jech,

. 2012 ; 203 (2) : 369-76.

Jazyk angličtina Země Nizozemsko

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc12034874

Proper classification of action potentials from extracellular recordings is essential for making an accurate study of neuronal behavior. Many spike sorting algorithms have been presented in the technical literature. However, no comparative analysis has hitherto been performed. In our study, three widely-used publicly-available spike sorting algorithms (WaveClus, KlustaKwik, OSort) were compared with regard to their parameter settings. The algorithms were evaluated using 112 artificial signals (publicly available online) with 2-9 different neurons and varying noise levels between 0.00 and 0.60. An optimization technique based on Adjusted Mutual Information was employed to find near-optimal parameter settings for a given artificial signal and algorithm. All three algorithms performed significantly better (p<0.01) with optimized parameters than with the default ones. WaveClus was the most accurate spike sorting algorithm, receiving the best evaluation score for 60% of all signals. OSort operated at almost five times the speed of the other algorithms. In terms of accuracy, OSort performed significantly less well (p<0.01) than WaveClus for signals with a noise level in the range 0.15-0.30. KlustaKwik achieved similar scores to WaveClus for signals with low noise level 0.00-0.15 and was worse otherwise. In conclusion, none of the three compared algorithms was optimal in general. The accuracy of the algorithms depended on proper choice of the algorithm parameters and also on specific properties of the examined signal.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12034874
003      
CZ-PrNML
005      
20121210094127.0
007      
ta
008      
121023s2012 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jneumeth.2011.10.013 $2 doi
035    __
$a (PubMed)22037595
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Wild, Jiri $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Karlovo nam. 13, 121 35 Praha 2, Czech Republic. wildjiri@fel.cvut.cz
245    10
$a Performance comparison of extracellular spike sorting algorithms for single-channel recordings / $c J. Wild, Z. Prekopcsak, T. Sieger, D. Novak, R. Jech,
520    9_
$a Proper classification of action potentials from extracellular recordings is essential for making an accurate study of neuronal behavior. Many spike sorting algorithms have been presented in the technical literature. However, no comparative analysis has hitherto been performed. In our study, three widely-used publicly-available spike sorting algorithms (WaveClus, KlustaKwik, OSort) were compared with regard to their parameter settings. The algorithms were evaluated using 112 artificial signals (publicly available online) with 2-9 different neurons and varying noise levels between 0.00 and 0.60. An optimization technique based on Adjusted Mutual Information was employed to find near-optimal parameter settings for a given artificial signal and algorithm. All three algorithms performed significantly better (p<0.01) with optimized parameters than with the default ones. WaveClus was the most accurate spike sorting algorithm, receiving the best evaluation score for 60% of all signals. OSort operated at almost five times the speed of the other algorithms. In terms of accuracy, OSort performed significantly less well (p<0.01) than WaveClus for signals with a noise level in the range 0.15-0.30. KlustaKwik achieved similar scores to WaveClus for signals with low noise level 0.00-0.15 and was worse otherwise. In conclusion, none of the three compared algorithms was optimal in general. The accuracy of the algorithms depended on proper choice of the algorithm parameters and also on specific properties of the examined signal.
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a elektrofyziologie $x metody $7 D004594
650    _2
$a lidé $7 D006801
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a počítačové zpracování signálu $7 D012815
650    _2
$a validace softwaru $7 D012986
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a validační studie $7 D023361
700    1_
$a Prekopcsak, Zoltan
700    1_
$a Sieger, Tomas
700    1_
$a Novak, Daniel
700    1_
$a Jech, Robert
773    0_
$w MED00002841 $t Journal of neuroscience methods $x 1872-678X $g Roč. 203, č. 2 (2012), s. 369-76
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22037595 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a
990    __
$a 20121023 $b ABA008
991    __
$a 20121210094204 $b ABA008
999    __
$a ok $b bmc $g 956884 $s 792371
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 203 $c 2 $d 369-76 $i 1872-678X $m Journal of neuroscience methods $n J Neurosci Methods $x MED00002841
LZP    __
$a Pubmed-20121023

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...