-
Je něco špatně v tomto záznamu ?
Performance comparison of extracellular spike sorting algorithms for single-channel recordings
J. Wild, Z. Prekopcsak, T. Sieger, D. Novak, R. Jech,
Jazyk angličtina Země Nizozemsko
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem, validační studie
- MeSH
- akční potenciály fyziologie MeSH
- algoritmy MeSH
- elektrofyziologie metody MeSH
- lidé MeSH
- neurony fyziologie MeSH
- počítačové zpracování signálu MeSH
- validace softwaru MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- validační studie MeSH
Proper classification of action potentials from extracellular recordings is essential for making an accurate study of neuronal behavior. Many spike sorting algorithms have been presented in the technical literature. However, no comparative analysis has hitherto been performed. In our study, three widely-used publicly-available spike sorting algorithms (WaveClus, KlustaKwik, OSort) were compared with regard to their parameter settings. The algorithms were evaluated using 112 artificial signals (publicly available online) with 2-9 different neurons and varying noise levels between 0.00 and 0.60. An optimization technique based on Adjusted Mutual Information was employed to find near-optimal parameter settings for a given artificial signal and algorithm. All three algorithms performed significantly better (p<0.01) with optimized parameters than with the default ones. WaveClus was the most accurate spike sorting algorithm, receiving the best evaluation score for 60% of all signals. OSort operated at almost five times the speed of the other algorithms. In terms of accuracy, OSort performed significantly less well (p<0.01) than WaveClus for signals with a noise level in the range 0.15-0.30. KlustaKwik achieved similar scores to WaveClus for signals with low noise level 0.00-0.15 and was worse otherwise. In conclusion, none of the three compared algorithms was optimal in general. The accuracy of the algorithms depended on proper choice of the algorithm parameters and also on specific properties of the examined signal.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12034874
- 003
- CZ-PrNML
- 005
- 20121210094127.0
- 007
- ta
- 008
- 121023s2012 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jneumeth.2011.10.013 $2 doi
- 035 __
- $a (PubMed)22037595
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Wild, Jiri $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Karlovo nam. 13, 121 35 Praha 2, Czech Republic. wildjiri@fel.cvut.cz
- 245 10
- $a Performance comparison of extracellular spike sorting algorithms for single-channel recordings / $c J. Wild, Z. Prekopcsak, T. Sieger, D. Novak, R. Jech,
- 520 9_
- $a Proper classification of action potentials from extracellular recordings is essential for making an accurate study of neuronal behavior. Many spike sorting algorithms have been presented in the technical literature. However, no comparative analysis has hitherto been performed. In our study, three widely-used publicly-available spike sorting algorithms (WaveClus, KlustaKwik, OSort) were compared with regard to their parameter settings. The algorithms were evaluated using 112 artificial signals (publicly available online) with 2-9 different neurons and varying noise levels between 0.00 and 0.60. An optimization technique based on Adjusted Mutual Information was employed to find near-optimal parameter settings for a given artificial signal and algorithm. All three algorithms performed significantly better (p<0.01) with optimized parameters than with the default ones. WaveClus was the most accurate spike sorting algorithm, receiving the best evaluation score for 60% of all signals. OSort operated at almost five times the speed of the other algorithms. In terms of accuracy, OSort performed significantly less well (p<0.01) than WaveClus for signals with a noise level in the range 0.15-0.30. KlustaKwik achieved similar scores to WaveClus for signals with low noise level 0.00-0.15 and was worse otherwise. In conclusion, none of the three compared algorithms was optimal in general. The accuracy of the algorithms depended on proper choice of the algorithm parameters and also on specific properties of the examined signal.
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a elektrofyziologie $x metody $7 D004594
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a validace softwaru $7 D012986
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a validační studie $7 D023361
- 700 1_
- $a Prekopcsak, Zoltan
- 700 1_
- $a Sieger, Tomas
- 700 1_
- $a Novak, Daniel
- 700 1_
- $a Jech, Robert
- 773 0_
- $w MED00002841 $t Journal of neuroscience methods $x 1872-678X $g Roč. 203, č. 2 (2012), s. 369-76
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22037595 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a
- 990 __
- $a 20121023 $b ABA008
- 991 __
- $a 20121210094204 $b ABA008
- 999 __
- $a ok $b bmc $g 956884 $s 792371
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 203 $c 2 $d 369-76 $i 1872-678X $m Journal of neuroscience methods $n J Neurosci Methods $x MED00002841
- LZP __
- $a Pubmed-20121023