• Je něco špatně v tomto záznamu ?

Dynamics and size of cross-linking-induced lipid nanodomains in model membranes

M. Štefl, R. Šachl, J. Humpolíčková, M. Cebecauer, R. Macháň, M. Kolářová, LB. Johansson, M. Hof,

. 2012 ; 102 (9) : 2104-13.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13000643
E-zdroje Online Plný text

NLK Cell Press Free Archives od 1960-01-01 do Před 1 rokem
Free Medical Journals od 1960 do Před 1 rokem
Freely Accessible Science Journals od 1960 do Před 12 měsíci
PubMed Central od 1960 do Před 1 rokem
Europe PubMed Central od 1960 do Před 1 rokem
Open Access Digital Library od 1960-09-01
Elsevier Open Access Journals od 1960-09-01 do 2018-02-06
Elsevier Open Archive Journals od 1960-09-01 do Před 1 rokem

Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ~8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13000643
003      
CZ-PrNML
005      
20170124161152.0
007      
ta
008      
130108s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bpj.2012.03.054 $2 doi
035    __
$a (PubMed)22824274
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Štefl, Martin $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova, Prague, Czech Republic.
245    10
$a Dynamics and size of cross-linking-induced lipid nanodomains in model membranes / $c M. Štefl, R. Šachl, J. Humpolíčková, M. Cebecauer, R. Macháň, M. Kolářová, LB. Johansson, M. Hof,
520    9_
$a Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ~8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation.
650    _2
$a cholerový toxin $x chemie $7 D002772
650    _2
$a reagencia zkříženě vázaná $x chemie $7 D003432
650    _2
$a G(M1) gangliosid $x chemie $7 D005677
650    _2
$a lipidové dvojvrstvy $x chemie $7 D008051
650    _2
$a fluidita membrány $7 D008560
650    _2
$a membránové mikrodomény $x chemie $x ultrastruktura $7 D021962
650    _2
$a chemické modely $7 D008956
650    _2
$a molekulární modely $7 D008958
650    _2
$a molekulární konformace $7 D008968
650    _2
$a změna skupenství $7 D044367
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Šachl, Radek $7 xx0210158
700    1_
$a Humpolíčková, Jana
700    1_
$a Cebecauer, Marek
700    1_
$a Macháň, Radek
700    1_
$a Kolářová, Marie
700    1_
$a Johansson, Lennart B-Å
700    1_
$a Hof, Martin
773    0_
$w MED00000774 $t Biophysical journal $x 1542-0086 $g Roč. 102, č. 9 (2012), s. 2104-13
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22824274 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130108 $b ABA008
991    __
$a 20170124161307 $b ABA008
999    __
$a ok $b bmc $g 963425 $s 798807
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 102 $c 9 $d 2104-13 $i 1542-0086 $m Biophysical journal $n Biophys J $x MED00000774
LZP    __
$a Pubmed-20130108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...