-
Something wrong with this record ?
The transmembrane region is responsible for targeting of adaptor protein LAX into "heavy rafts"
M. Hrdinka, P. Otahal, V. Horejsi,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2006
Free Medical Journals
from 2006
Public Library of Science (PLoS)
from 2006
PubMed Central
from 2006
Europe PubMed Central
from 2006
ProQuest Central
from 2006-12-01
Open Access Digital Library
from 2006-01-01
Open Access Digital Library
from 2006-01-01
Open Access Digital Library
from 2006-10-01
Medline Complete (EBSCOhost)
from 2008-01-01
Nursing & Allied Health Database (ProQuest)
from 2006-12-01
Health & Medicine (ProQuest)
from 2006-12-01
Public Health Database (ProQuest)
from 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
from 2006
- MeSH
- Adaptor Proteins, Vesicular Transport chemistry genetics metabolism MeSH
- Cell Line MeSH
- Protein Interaction Domains and Motifs MeSH
- Humans MeSH
- Membrane Microdomains genetics metabolism MeSH
- Protein Multimerization MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The importance of membrane compartmentalization into specific membrane microdomains has been shown in many biological processes such as immunoreceptor signaling, membrane trafficking, pathogen infection, and tumor progression. Microdomains like lipid rafts, caveolae and tetraspanin enriched microdomains are relatively resistant to solubilization by some detergents. Large detergent-resistant membrane fragments (DRMs) resulting from such membrane solubilization can be conveniently isolated by density gradient ultracentrifugation or gel filtration. Recently, we described a novel type of raft-like membrane microdomains producing, upon detergent Brij98 solubilization, "heavy DRMs" and containing a number of functionally relevant proteins. Transmembrane adaptor protein LAX is a typical "heavy raft" protein. The present study was designed to identify the molecular determinants targeting LAX-derived constructs to heavy rafts. METHODOLOGY/PRINCIPAL FINDINGS: We prepared several constructs encoding chimeric proteins containing various informative segments of the LAX sequence and evaluated their effects on targeting to heavy rafts. Replacement of the polybasic membrane-proximal part of LAX by CD3ε-derived membrane-proximal part had no effect on LAX solubilization. Similarly, the membrane-proximal part of LAX, when introduced into non-raft protein CD25 did not change CD25 detergent solubility. These results indicated that membrane-proximal part of LAX is not important for LAX targeting to heavy rafts. On the other hand, the replacement of transmembrane part of CD25 by the transmembrane part of LAX resulted in targeting into heavy rafts. We also show that LAX is not S-acylated, thus palmitoylation is not involved in LAX targeting to heavy rafts. Also, covalent dimerization was excluded as a cause of targeting into heavy rafts. CONCLUSIONS/SIGNIFICANCE: We identified the transmembrane domain of LAX as a first motif targeting transmembrane protein constructs to detergent-resistant heavy rafts, a novel type of membrane microdomains containing a number of physiologically important proteins.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13000755
- 003
- CZ-PrNML
- 005
- 20130108115840.0
- 007
- ta
- 008
- 130108s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0036330 $2 doi
- 035 __
- $a (PubMed)22662118
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Hrdinka, Matous $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 245 14
- $a The transmembrane region is responsible for targeting of adaptor protein LAX into "heavy rafts" / $c M. Hrdinka, P. Otahal, V. Horejsi,
- 520 9_
- $a BACKGROUND: The importance of membrane compartmentalization into specific membrane microdomains has been shown in many biological processes such as immunoreceptor signaling, membrane trafficking, pathogen infection, and tumor progression. Microdomains like lipid rafts, caveolae and tetraspanin enriched microdomains are relatively resistant to solubilization by some detergents. Large detergent-resistant membrane fragments (DRMs) resulting from such membrane solubilization can be conveniently isolated by density gradient ultracentrifugation or gel filtration. Recently, we described a novel type of raft-like membrane microdomains producing, upon detergent Brij98 solubilization, "heavy DRMs" and containing a number of functionally relevant proteins. Transmembrane adaptor protein LAX is a typical "heavy raft" protein. The present study was designed to identify the molecular determinants targeting LAX-derived constructs to heavy rafts. METHODOLOGY/PRINCIPAL FINDINGS: We prepared several constructs encoding chimeric proteins containing various informative segments of the LAX sequence and evaluated their effects on targeting to heavy rafts. Replacement of the polybasic membrane-proximal part of LAX by CD3ε-derived membrane-proximal part had no effect on LAX solubilization. Similarly, the membrane-proximal part of LAX, when introduced into non-raft protein CD25 did not change CD25 detergent solubility. These results indicated that membrane-proximal part of LAX is not important for LAX targeting to heavy rafts. On the other hand, the replacement of transmembrane part of CD25 by the transmembrane part of LAX resulted in targeting into heavy rafts. We also show that LAX is not S-acylated, thus palmitoylation is not involved in LAX targeting to heavy rafts. Also, covalent dimerization was excluded as a cause of targeting into heavy rafts. CONCLUSIONS/SIGNIFICANCE: We identified the transmembrane domain of LAX as a first motif targeting transmembrane protein constructs to detergent-resistant heavy rafts, a novel type of membrane microdomains containing a number of physiologically important proteins.
- 650 _2
- $a adaptorové proteiny vezikulární transportní $x chemie $x genetika $x metabolismus $7 D033942
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a membránové mikrodomény $x genetika $x metabolismus $7 D021962
- 650 _2
- $a interakční proteinové domény a motivy $7 D054730
- 650 _2
- $a multimerizace proteinu $7 D055503
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Otahal, Pavel
- 700 1_
- $a Horejsi, Vaclav
- 773 0_
- $w MED00180950 $t PLoS ONE $x 1932-6203 $g Roč. 7, č. 5 (2012), s. e36330
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22662118 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130108 $b ABA008
- 991 __
- $a 20130108114439 $b ABA008
- 999 __
- $a ok $b bmc $g 963537 $s 798919
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 7 $c 5 $d e36330 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20130108